scholarly journals Predation Efficiency upon Clinical Isolates: Bdellovibrio bacteriovorus is Prey Specific and Origin Dependent

2021 ◽  
Author(s):  
Cristina Herencias ◽  
Claudia Saralegui ◽  
Ana Halperín ◽  
Juan de Dios Caballero ◽  
Blanca Pérez-Viso ◽  
...  

The use of predatory bacteria as live antibiotics has been proposed for managing bacterial infections, especially for those caused by antibiotic multiresistant isolates for which there are few therapeutic options. However, the current knowledge in this field is scarce, with most of the available data based on environmental isolates, with a significant lack of human clinical samples. Here, we evaluated the predatory spectrum of the reference strain Bdellovibrio bacteriovorus 109J on 13 Serratia marcescens (including carbapenemase producers) and 78 Pseudomonas aeruginosa clinical isolates from respiratory (colonizing lungs of cystic fibrosis patients) or bacteremic infections, differentiated by phenotype (mucoid or not), antibiotic resistance phenotype (including multidrug-resistant isolates), and genetic lineage (frequent and rare sequence types). The source of the isolates was significantly associated with predation efficiency (100% for S. marcescens, 67% for P. aeruginosa from cystic fibrosis, and 25% for P. aeruginosa from bacteremia). In contrast, no correlation with colonial morphotype, genetic background, or antibiotic susceptibility was found. To evaluate the influence of the predator on the predation, we employed a more aggressive B. bacteriovorus mutant 109J preying upon the same 48 bacteremic P. aeruginosa isolates. The mutant's predation efficiency was higher than that of their wild-type counterpart (43% vs. 25%), pointing out that predation is specific to each prey-predator pair. Our results provide the most extensive study of clinical prey susceptibility published to date and show that the prey-predator interaction is influenced by the origin of the isolates rather than by their genetic background or their antibiotic susceptibility phenotype.

2020 ◽  
Vol 7 (3) ◽  
Author(s):  
Ibrahim A Naqid ◽  
Amer A Balatay ◽  
Nawfal Rasheed Hussein ◽  
Kurdistan Abdullah Saeed ◽  
Hiba Abdulaziz Ahmed ◽  
...  

Background: Escherichia coli (E. coli) is one of the most common causative agents of bacterial infections. The emergence of multidrug-resistant E. coli is a major public health threat worldwide. Objectives: This study aimed to determine the antibiotic susceptibility profile of clinical isolates of E. coli from different samples. Methods: A total number of 454 clinical samples, including urine, wound, cervical swab, blood, semen, ascetic, and cerebral spinal fluid samples were collected from patients between January 2017 and February 2020. Then, E. coli was confirmed and susceptibility to different antibiotics was determined using the Vitek-2 compact system. Results: Escherichia coli isolates were more frequent in females (70.7%) than in males (29.3%). In the case of urine samples, E. coli was found to be highly susceptible to ertapenem (97.6%) and imipenem (96.4%) but resistant to ampicillin (87.8%). For wound and cervical swabs, E. coli was 100% resistant to ampicillin and cefepime but 100% sensitive to ertapenem and imipenem. It was found that E. coli isolates from blood samples were 100% resistant to ampicillin, ceftriaxone, and cefoxitin, and around 75% of them were sensitive to ertapenem, ciprofloxacin, and levofloxacin. Finally, E. coli isolated from other clinical samples were highly sensitive to ertapenem, imipenem, levofloxacin, nitrofurantoin, and cefazolin. Conclusions: Escherichia coli isolated from various clinical specimens showed differences in antibiotic sensitivity patterns, with high resistance to commonly used antibiotics. The most effective antibiotics against E. coli isolates were ertapenem, imipenem, and nitrofurantoin. However, the clinical isolates of E. coli displayed high resistance rates to ampicillin, ceftriaxone, and cefepime. Therefore, it is proposed to perform antibiotic sensitivity testing by physicians to select the most effective antibiotics.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S801-S801
Author(s):  
Jose Alexander ◽  
Daniel Navas ◽  
Marly Flowers ◽  
Angela Charles ◽  
Amy Carr

Abstract Background With the rise of the antimicrobial resistance between different genera and species of bacteria, Phage Therapy is becoming a more realistic and accessible option for patients with limited or no antimicrobial options. Being able to have rapid access to a collection of clinical active phages is key for rapid implementation of phage therapy. The Microbiology Department at AdventHealth Orlando is performing routine screening of environmental and patient samples for isolation of phages against non-fermenting Gram negative bacteria to develop a Phage Bank. Methods Protocols for phage isolation from environmental sources such as lakes, rivers and sewers and clinical samples were developed. A series of respiratory, throat, stool and urine samples were processed following an internal protocol that includes centrifugation, filtration and enrichment. Clinical samples were centrifugated for 10 minutes, filtered using 0.45µm centrifugation filters, seeded with targeted host bacteria (clinical isolates) and incubated at 35°C for 24 hours. The enriched samples were centrifugated and filtered for a final phage enriched solution. Screening and isolation were performed using the Gracia method over trypticase soybean agar (TSA) for plaque morphology and quantification. Host range screening of other clinical isolates of P. aeruginosa was performed using the new isolated and purified phages. Results 4 lytic phages against clinical strains of P. aeruginosa from patient with diagnosis of cystic fibrosis (CF), were isolated and purified from 4 different respiratory samples, including sputum and bronchial alveolar lavage. All phages showed phenotypical characteristics of lytic activity. 1 phage was active against 4 strains of P. aeruginosa, 1 phage was active against 2 strains of P. aeruginosa and the remaining 2 phages were active only against the initial host target strain. Conclusion With this study we demonstrated the potential use of clinical samples as source for isolating active bacteriophages against clinically significant bacteria strains. Clinical samples from vulnerable population of patients with chronic infections are part of our routine “phage-hunting” process to stock and grow our Phage Bank project for future clinical use. Disclosures All Authors: No reported disclosures


Author(s):  
Jeevan Shetty ◽  
Zarrin Afroz

Background: Clindamycin is an important drug used in the treatment of Methicillin Sensitive Staphylococcus aureus (MSSA) as well as in Methicillin-resistant Staphylococcus aureus (MRSA) infections. This drug is widely used in the treatment of skin and soft tissue infections caused by them. Therapeutic failure caused by macrolide-lincosamine-streptogramin B constitutive and inducible clindamycin resistance (MLSBc and MLSBi) is being more commonly reported.Methods: The present study was conducted over a period of six months from October 2016 to March 2017 to know the incidence of MLSBc and MLSBi in Staphylococcus aureus (S. aureus) isolates obtained in our hospital by D-test as per CLSI guidelines. A total of 130 isolates of S.aureus were obtained from different clinical specimens which included pus/ wound swab (n=266), urine (n=577), sputum (n=225), blood (n=221), throat swab (n=71), ear/eye discharge (n=21), high vaginal swab (n=20) and body fluids (n=50). All the isolates were subjected to antibiotic sensitivity testing by Kirby Bauer’s disc diffusion method. Amoxyclav, Erythromycin, Clindamycin, Co-trimoxazole, Tetracycline, Ofloxacin, Gentamicin, Linezolid and Vancomycin were the antibiotics used.Results: Out of 130 (8.9%) isolates of S. aureus obtained from 1451 clinical samples, 82 (63.1%) were found to be MSSA and 48 (36.9%) were MRSA. Among S. aureus, 43 (33.1%) isolates showed MLSBc resistance, 22 (16.9%) isolates showed MLSBi resistance and 20 (15.4%) isolates showed MS phenotype. The remaining 45 (34.6%) isolates remained sensitive to Erythromycin. Among MSSA, MLSBc were observed in 18 (22%) isolates and MLSBi in 9 (11%) while in MRSA, MLSBc were observed in 25 (52.1%) isolates and MLSBi in 13 (27.1%) isolates. Almost all clinical isolates showed 100% sensitivity to Vancomycin and Linezolid in routine antibiotic susceptibility testing. Both MLSBc and MLSBi resistance was significantly higher (p<0.05) in MRSA than in MSSA.Conclusions: The study emphasizes the importance of conducting D test along with routine antibiotic susceptibility testing for better utilization of clindamycin in S. aureus infections.


2021 ◽  
Vol 9 (11) ◽  
pp. 781-788
Author(s):  
N. Sudha ◽  
◽  
Dillirani V. ◽  
Sheeba V. ◽  
Fahad Affan ◽  
...  

Escherichia coli (E.coli), a common human intestinal commensal causes infections in bodily sites outside the gastrointestinal tract and are called Extra-intestinal pathogenic E.coli. ExPEC causes Urinary tract infections, Blood stream infections, Pneumonia, meningitis,bone, skin, and soft tissue infections including both nosocomial and community acquired infections. The increasing trend of developing antibiotic resistance in ExPEC is of global treat which causes increasing morbidity and mortality.As there is no vaccination forExPEC so it is necessary to analyze the antibiotic susceptibility pattern for empirical treatment in emergency situations.Extended spectrum beta lactamases (ESBLs) hydrolyze β-lactam antibiotics of third generation Cephalosporins, Penicillins and Monobactams. Since the ESBL enzyme genes are usually found in large plasmids, they also contain other antimicrobial resistant genes.AmpC production in E.coli is through plasmids and mutation in their porin structure. Carbapenems are the drug of choice for ESBL producing Ecoli but recent time development of resistance is increasingly reported due to production of Carbapenemase.The aim of this study is to test the Antimicrobial susceptibility pattern of Extra-intestinal Ecoli isolates. The study was conducted in the department of Microbiology, Stanley Medical College, Chennai during the period October 2018 to May 2019.The institutional ethical committee approval was obtained and clinical samples such as urine, blood, pus, sputum and sterile body fluids were received from 983 patients suspected of bacterial infections. The samples were processed and biochemical test identified 84 Ecoli Isolates. Antimicrobial testing, ESBL, AMPC screening and carbapenemase production were tested. E.coli isolates showed resistance to most of the beta lactam antibiotics such as Ampicillin, CefotaximeandCeftazidime and also to Ciprofloxacin &Cotrimoxazole.


Author(s):  
Mahtab Sadat Madani Boroujeni ◽  
Mohammadreza Mahzounieh ◽  
Azizollah Ebrahimi Kahrizsangi ◽  
Soudabeh Rostami ◽  
Azam Mokhtari ◽  
...  

Background: Staphylococcus aureus (S. aureus) is a major cause of nosocomial infections in humans and animals. Because of the widespread resistance to antibiotics, microbiologists are trying to find other therapeutic interventions such as phage therapy for bacterial infections. Objectives: The present study aimed to isolate staphylophages with lytic effects on methicillin-resistant S. aureus (MRSA) clinical isolates as a potential alternative agent to antibiotic therapy. Methods: This experimental, descriptive study is performed in the Microbiology Laboratory of Shahrekord University (Iran) from September 2018 to March 2019. Two cocktails of staphylophages were isolated from Isfahan (Iran) urban sewage samples. The double-layer agar method was used to detect lytic phages. Morphology characteristic by transmission electron microscopy (TEM) images was used to identify staphylophages. One hundred and thirty three S. aureus were isolated from clinical samples of two teaching hospitals in Isfahan and Shiraz, Iran. Methicillin resistance and the presence of the mecA gene were determined by the disk diffusion method and polymerase chain reaction (PCR) assay, respectively. The phage susceptibility of mecA positive isolates was determined by plaque assay. Results: Two staphylophage cocktails were prepared, which had lytic effects on forty-four MRSA isolates. Cocktails 1 and 2 lysed 19 (14.2%) and 25 (18.7%) isolates, respectively. Of 133 S. aureus isolates, 88.7% carried the mecA gene. Conclusions: Different bacteriophages in two phage cocktails had relatively good lytic effects on S. aureus clinical isolates. Therefore, phage cocktails may be an appropriate alternative to antibiotics against S. aureus.


Author(s):  
Muhammad Ali

The research was aimed to evaluate the antibiotic susceptibility pattern of Staphylococcus species from clinical samples obtained from some hospitals in Kano metropolis, Nigeria. The ear swab, high vaginal swab (HVS), wound swab and urine samples from the patients attending the hospitals were collected and inoculated onto the surface of freshly prepared Nutrient agar for bacterial isolation. The bacteria isolated were identified by conventional microbiological methods namely; Gram staining, biochemical test (such as catalase, coagulase, and DNase test), mannitol salt agar and heamolysis test. The isolates were subjected to antibiotic susceptibility testing using the agar disc diffusion method. The result showed that S. aureus was highly susceptible to Ciprofloxacin 105 (68.63%), Gentamicin 102 (66.67%), Levofloxacin 95 (62.08%) and Amikacin 90 (58.82%), S. epidermidis was highly susceptible to Gentamicin 13 (61.90%), Levofloxacin 12 (57.14%) and Nitrofurantoin 11 (52.38%) while S. saprophyticus was highly susceptible to Cefoxitin 7 (77.78%), Gentamicin 6 (66.67%) and Nitrofurantoin 5 (55.56%). On the other hand, S. aureus was highly resistant to Cefuroxime 153 (100%), Ceftazidime 150 (98.04%), Amoxicillin/clavulanic acid 120 (78.43%) and Cloxacillin 111 (72.55%), S. epidermidis was highly resistant to Ceftazidime 20 (95.24%), Cloxacillin 19 (90.48%) then Cefoxitin, Erythromycin and Amoxicillin/clavulanic acid with 15 (71.43%) both. S. saprophyticus was highly resistant to Cefepime 9 (100%), Cloxacillin 8 (88.89%), Ceftazidime 7 (77.78%), Imipenem and Erythromycin with 6 (66.67%) respectively. There is a statistical difference in the sensitivity of the isolates against the antibiotics used at p<0.05. It is concluded that Staphylococcus species develop resistance to some classes of antibiotics.


2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC &lt;4µg/dL). CZA (CLSI MIC &lt;8µg/dL) and I/R (FDA MIC &lt;2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document