scholarly journals Identification of Potent Small Molecule Inhibitors of SARS-CoV-2 Entry

2021 ◽  
Author(s):  
Sonia Jablonski ◽  
Huihui Mou ◽  
Yuka Otsuka ◽  
Joseph Jablonski ◽  
Robert S Adcock ◽  
...  

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, Calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals Calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.

2020 ◽  
Author(s):  
Mohammed Ahmed ◽  
Abhisek Dwivedy ◽  
Richard Mariadasse ◽  
Satish Tiwari ◽  
Jeyaraman Jeyakanthan ◽  
...  

The current COVID-19 outbreak calls for a multi-disciplinary approach towards the design and development of novel anti-COVID therapeutics including vaccines and small molecule inhibitors targeting the viral proteins of causative agent, SARS-CoV-2. Using a combination of bioinformatics and computational tools, we have modelled the 3-D structure of the RNA-dependent RNA-polymerase (RdRp) of SARS-CoV-2 and predicted its probable GTP-binding site. This site was computationally targeted using small molecules inhibitors reported in a previous study on the RdRp of the Hepatitis C virus. Further optimizations have suggested a lead molecule that may prove fruitful in development of inhibitors against RdRp of SARS-CoV-2.


Author(s):  
Quinlin M. Hanson ◽  
Kelli M. Wilson ◽  
Min Shen ◽  
Zina Itkin ◽  
Richard T. Eastman ◽  
...  

AbstractThe COVID-19 pandemic, caused by SARS-CoV-2, is a pressing public health emergency garnering rapid response from scientists across the globe. Host cell invasion is initiated through direct binding of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Disrupting the spike-ACE2 interaction is a potential therapeutic target for treating COVID-19. We have developed a proximity-based AlphaLISA assay to measure binding of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) to ACE2. Utilizing this assay platform, a drug-repurposing screen against 3,384 small molecule drugs and pre-clinical compounds was performed, yielding 25 high-quality, small-molecule hits that can be evaluated in cell-based models. This established AlphaLISA RBD-ACE2 platform can facilitate evaluation of biologics or small molecules that can perturb this essential viral-host interaction to further the development of interventions to address the global health pandemic.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 57
Author(s):  
Zhi-Ling Zhu ◽  
Xiao-Dan Qiu ◽  
Shuo Wu ◽  
Yi-Tong Liu ◽  
Ting Zhao ◽  
...  

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


2021 ◽  
Author(s):  
Sebastien Granier ◽  
Robert D Healey ◽  
Essa Saied ◽  
Xiaojing Cong ◽  
Gergely Karsai ◽  
...  

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes such as energy utilisation and cell proliferation. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to ultimately produce pro-proliferative sphingosine-1-phosphate. Human ceramidases can be soluble proteins (acid and neutral ceramidase) or integral membrane proteins (alkaline ceramidases). Increasing ceramide levels to increase apoptosis has shown efficacy as a cancer treatment using small molecules inhibiting a soluble ceramidase. Due to the transmembrane nature of alkaline ceramidases, no specific small molecule inhibitors have been reported. Here, we report novel fluorescent substrates (FRETceramides) of ceramidases that can be used to monitor enzyme activity in real-time. We use FRETceramides to discover the first drug-like inhibitors of alkaline ceramidase 3 (ACER3) which are active in cell-based assays. Biophysical characterization of enzyme:inhibitor interactions reveal a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules.


2020 ◽  
Vol 295 (52) ◽  
pp. 18579-18588 ◽  
Author(s):  
Jinghua Lu ◽  
Peter D. Sun

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has emerged to a pandemic and caused global public health crisis. Human angiotensin-converting enzyme 2(ACE2) was identified as the entry receptor for SARS-CoV-2. As a carboxypeptidase, ACE2 cleaves many biological substrates besides angiotensin II to control vasodilatation and vascular permeability. Given the nanomolar high affinity between ACE2 and SARS-CoV-2 spike protein, we investigated how this interaction would affect the enzymatic activity of ACE2. Surprisingly, SARS-CoV-2 trimeric spike protein increased ACE2 proteolytic activity ∼3-10 fold against model peptide substrates, such as caspase-1 substrate and Bradykinin-analog. The enhancement in ACE2 enzymatic function was mediated by the binding of SARS-CoV-2 spike RBD domain. These results highlighted the potential for SARS-CoV-2 infection to enhance ACE2 activity, which may be relevant to the cardiovascular symptoms associated with COVID-19.


2020 ◽  
Vol 14 ◽  
pp. 117793222096550
Author(s):  
Loubna Allam ◽  
Fatima Ghrifi ◽  
Hakmi Mohammed ◽  
Naima El Hafidi ◽  
Rachid El Jaoudi ◽  
...  

The global burden of infections and the rapid spread of viral diseases show the need for new approaches in the prevention and development of effective therapies. To this end, we aimed to explore novel inhibitor compounds that can stop replication or decrease the viral load of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is currently no approved treatment. Besides using the angiotensin-converting enzyme (ACE2) receptor as a main gate, the CoV-2 can bind to the glucose-regulating protein 78 (GRP78) receptor to get into the cells to start an infection. Here, we report potential inhibitors comprising small molecules and peptides that could interfere with the interaction of SARS-CoV-2 and its target cells by blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. These inhibitors were discovered through an approach of in silico screening of available databases of bioactive peptides and polyphenolic compounds and the analysis of their docking modes. This process led to the selection of 9 compounds with optimal binding affinities to the target sites. The peptides (satpdb18674, satpdb18446, satpdb12488, satpdb14438, and satpdb28899) act on regions III and IV of the viral Spike protein and on its binding sites in GRP78. However, 4 polyphenols such as epigallocatechin gallate (EGCG), homoeriodictyol, isorhamnetin, and curcumin interact, in addition to the Spike protein and its binding sites in GRP78, with the ATPase domain of GRP78. Our work demonstrates that there are at least 2 approaches to block the spread of SARS-CoV-2 by preventing its fusion with the host cells via GRP78.


2016 ◽  
Vol 14 (43) ◽  
pp. 10208-10216 ◽  
Author(s):  
Helen L. Lightfoot ◽  
Eric A. Miska ◽  
Shankar Balasubramanian

Small molecules enhance Dicer processing of a let-7 miRNA precursor through antagonization of the Lin28–pre-let-7 interaction.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Louise Kime ◽  
Helen A. Vincent ◽  
Deena M. A. Gendoo ◽  
Stefanie S. Jourdan ◽  
Colin W. G. Fishwick ◽  
...  

Abstract The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5′-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E.


Author(s):  
Ming He ◽  
Wenxing Lv ◽  
Yu Rao

Proteolysis targeting chimeras (PROTAC) represents a new type of small molecule induced protein degradation technology that has emerged in recent years. PROTAC uses bifunctional small molecules to induce ubiquitination of target proteins and utilizes intracellular proteasomes for chemical knockdown. It complements the gene editing and RNA interference for protein knockdown. Compared with small molecule inhibitors, PROTAC has shown great advantages in overcoming tumor resistance, affecting the non-enzymatic function of target proteins, degrading undruggable targets, and providing new rapid and reversible chemical knockout tools. At the same time, its challenges and problems also need to be resolved as a fast-developing newchemical biology technology.


Sign in / Sign up

Export Citation Format

Share Document