scholarly journals Mitochondrial membrane proteins and VPS35 orchestrate selective removal of mtDNA

2021 ◽  
Author(s):  
David Pla-Martin ◽  
Ayesha Sen ◽  
Sebastian Kallabis ◽  
Julian Nuechel ◽  
Kanjanamas Maliphol ◽  
...  

Integrity of mitochondrial DNA (mtDNA), encoding several subunits of the respiratory chain, is essential to maintain mitochondrial fitness. Mitochondria, as a central hub for metabolism, are affected in a wide variety of human diseases but also during normal ageing, where mtDNA integrity is compromised. Mitochondrial quality control mechanisms work at different levels, and mitophagy and its variants are critical to remove dysfunctional mitochondria together with mtDNA to maintain cellular homeostasis. Understanding the mechanisms governing a selective turnover of mutation-bearing mtDNA without affecting the entire mitochondrial pool is fundamental to design therapeutic strategies against mtDNA diseases and ageing. Here we show that mtDNA depletion after expressing a dominant negative version of the mitochondrial helicase Twinkle, or by chemical means, is due to an exacerbated mtDNA turnover. Targeting of nucleoids is controlled by Twinkle which, together with the mitochondrial transmembrane proteins ATAD3 and SAMM50, orchestrate mitochondrial membrane remodeling to form extrusions. mtDNA removal depends on autophagy and requires the vesicular trafficking protein VPS35 which binds to Twinkle-enriched mitochondrial subcompartments upon mtDNA damage. Stimulation of autophagy by rapamycin selectively removes mtDNA deletions which accumulated during muscle regeneration in vivo, but without affecting mtDNA copy number. With these results we unveil a new complex mechanism specifically targeting and removing mutant mtDNA which occurs outside the mitochondrial network. We reveal the molecular targets involved in a process with multiple potential benefits against human mtDNA related diseases, either inherited, acquired or due to normal ageing.

2021 ◽  
Author(s):  
David Pla-Martin ◽  
Ayesha Sen ◽  
Sebastian Kallabis ◽  
Julian Nüchel ◽  
Kanjanamas Maliphol ◽  
...  

Abstract Integrity of mitochondrial DNA (mtDNA), encoding several subunits of the respiratory chain, is essential to maintain mitochondrial fitness. Mitochondria, as a central hub for metabolism, are affected in a wide variety of human diseases but also during normal ageing, where mtDNA integrity is compromised. Mitochondrial quality control mechanisms work at different levels, and mitophagy and its variants are critical to remove dysfunctional mitochondria together with mtDNA to maintain cellular homeostasis. Understanding the mechanisms governing a selective turnover of mutation-bearing mtDNA without affecting the entire mitochondrial pool is fundamental to design therapeutic strategies against mtDNA diseases and ageing. Here we show that mtDNA depletion after expressing a dominant negative version of the mitochondrial helicase Twinkle, or by chemical means, is due to an exacerbated mtDNA turnover. Targeting of nucleoids is controlled by Twinkle which, together with the mitochondrial transmembrane proteins ATAD3 and SAMM50, orchestrate mitochondrial membrane remodeling to form extrusions. mtDNA removal depends on autophagy and requires the vesicular trafficking protein VPS35 which binds to Twinkle-enriched mitochondrial subcompartments upon mtDNA damage. Stimulation of autophagy by rapamycin selectively removes mtDNA deletions which accumulated during muscle regeneration in vivo, but without affecting mtDNA copy number. With these results we unveil a new complex mechanism specifically targeting and removing mutant mtDNA which occurs outside the mitochondrial network. We reveal the molecular targets involved in a process with multiple potential benefits against human mtDNA related diseases, either inherited, acquired or due to normal ageing.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Richard L. Eckert ◽  
Gautam Adhikary ◽  
Christina A. Young ◽  
Ralph Jans ◽  
James F. Crish ◽  
...  

AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Variousin vivogenetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Valerie P. Tan ◽  
Jeffrey M. Smith ◽  
Michelle Tu ◽  
Justin D. Yu ◽  
Eric Y. Ding ◽  
...  

Abstract Preservation of mitochondrial integrity is critical for maintaining cellular homeostasis. Mitophagy is a mitochondria-specific type of autophagy which eliminates damaged mitochondria thereby contributing to mitochondrial quality control. Depolarization of the mitochondrial membrane potential is an established mechanism for inducing mitophagy, mediated through PINK1 stabilization and Parkin recruitment to mitochondria. Hexokinase-II (HK-II) which catalyzes the first step in glucose metabolism, also functions as a signaling molecule to regulate cell survival, and a significant fraction of cellular HK-II is associated with mitochondria (mitoHK-II). We demonstrate here that pharmacological interventions and adenoviral expression of a mitoHK-II dissociating peptide which reduce mitoHK-II levels lead to robust increases in mitochondrial Parkin and ubiquitination of mitochondrial proteins in cardiomyocytes and in a human glioblastoma cell line 1321N1, independent of mitochondrial membrane depolarization or PINK1 accumulation. MitoHK-II dissociation-induced mitophagy was demonstrated using Mito-Keima in cardiomyocytes and in 1321N1 cells. Subjecting cardiomyocytes or the in vivo heart to ischemia leads to modest dissociation of mitoHK-II. This response is potentiated by expression of the mitoHK-II dissociating peptide, which increases Parkin recruitment to mitochondria and, importantly, provides cardioprotection against ischemic stress. These results suggest that mitoHK-II dissociation is a physiologically relevant cellular event that is induced by ischemic stress, the enhancement of which protects against ischemic damage. The mechanism which underlies the effects of mitoHK-II dissociation can be attributed to the ability of Bcl2-associated athanogene 5 (BAG5), an inhibitor of Parkin, to localize to mitochondria and form a molecular complex with HK-II. Overexpression of BAG5 attenuates while knockdown of BAG5 sensitizes the effect of mitoHK-II dissociation on mitophagy. We suggest that HK-II, a glycolytic molecule, can function as a sensor for metabolic derangements at mitochondria to trigger mitophagy, and modulating the intracellular localization of HK-II could be a novel way of regulating mitophagy to prevent cell death induced by ischemic stress.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


1997 ◽  
Vol 17 (5) ◽  
pp. 898-904 ◽  
Author(s):  
Hikaru Ueno ◽  
Hiroaki Yamamoto ◽  
Shin-ichi Ito ◽  
Jian-Jun Li ◽  
Akira Takeshita

Oncogenesis ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Kaname Sakamoto ◽  
Kaori Endo ◽  
Kei Sakamoto ◽  
Kou Kayamori ◽  
Shogo Ehata ◽  
...  

AbstractETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 344
Author(s):  
Anna Maria Fratta Pasini ◽  
Luciano Cominacini

Over the last few decades, many efforts have been put into fields that explore the potential benefits of antioxidants, especially with regards to aging, cancer, cardiovascular diseases, and neurodegenerative diseases. [...]


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


Sign in / Sign up

Export Citation Format

Share Document