scholarly journals Effect of Antioxidant Therapy on Oxidative Stress In Vivo

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 344
Author(s):  
Anna Maria Fratta Pasini ◽  
Luciano Cominacini

Over the last few decades, many efforts have been put into fields that explore the potential benefits of antioxidants, especially with regards to aging, cancer, cardiovascular diseases, and neurodegenerative diseases. [...]

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 377
Author(s):  
Yunna Lee ◽  
Eunok Im

Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.


2020 ◽  
Author(s):  
Laura Casares ◽  
Juan Diego Unciti ◽  
Maria Eugenia Prados ◽  
Diego Caprioglio ◽  
Maureen Higgins ◽  
...  

ABSTRACTOxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington’s disease, setting the basis for further developments in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kai Wang ◽  
Yanhan Dong ◽  
Jing Liu ◽  
Lili Qian ◽  
Tao Wang ◽  
...  

Reduction oxidation (REDOX) reaction is crucial in life activities, and its dynamic balance is regulated by ROS. Reactive oxygen species (ROS) is associated with a variety of metabolic diseases involving in multiple cellular signalling in pathologic and physiological signal transduction. ROS are the by-products of numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria, and peroxisome. ROS signalling is not only involved in normal physiological processes but also causes metabolic dysfunction and maladaptive responses to inflammatory signals, which depends on the cell type or tissue environment. Excess oxidants are able to alter the normal structure and function of DNA, lipids, and proteins, leading to mutations or oxidative damage. Therefore, excessive oxidative stress is usually regarded as the cause of various pathological conditions, such as cancer, neurodegeneration, cardiovascular diseases (CVDs), diabetes, and kidney diseases. Currently, it has been possible to detect diabetes and other cardiac diseases by detecting derivatives accompanied by oxidative stress in vivo as biomarkers, but there is no effective method to treat these diseases. In consequence, it is essential for us to seek new therapy targeting these diseases through understanding the role of ROS signalling in regulating metabolic activity, inflammatory activation, and cardiac diseases related to metabolic dysfunction. In this review, we summarize the current literature on REDOX and its role in the regulation of cardiac metabolism and inflammation, focusing on ROS, local REDOX signalling pathways, and other mechanisms.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1383 ◽  
Author(s):  
John Papaconstantinou

The ASK1-signalosome→p38 MAPK and SAPK/JNK signaling networks promote senescence (in vitro) and aging (in vivo, animal models and human cohorts) in response to oxidative stress and inflammation. These networks contribute to the promotion of age-associated cardiovascular diseases of oxidative stress and inflammation. Furthermore, their inhibition delays the onset of these cardiovascular diseases as well as senescence and aging. In this review we focus on whether the (a) ASK1-signalosome, a major center of distribution of reactive oxygen species (ROS)-mediated stress signals, plays a role in the promotion of cardiovascular diseases of oxidative stress and inflammation; (b) The ASK1-signalosome links ROS signals generated by dysfunctional mitochondrial electron transport chain complexes to the p38 MAPK stress response pathway; (c) the pathway contributes to the sensitivity and vulnerability of aged tissues to diseases of oxidative stress; and (d) the importance of inhibitors of these pathways to the development of cardioprotection and pharmaceutical interventions. We propose that the ASK1-signalosome regulates the progression of cardiovascular diseases. The resultant attenuation of the physiological characteristics of cardiomyopathies and aging by inhibition of the ASK1-signalosome network lends support to this conclusion. Importantly the ROS-mediated activation of the ASK1-signalosome p38 MAPK pathway suggests it is a major center of dissemination of the ROS signals that promote senescence, aging and cardiovascular diseases. Pharmacological intervention is, therefore, feasible through the continued identification of potent, non-toxic small molecule inhibitors of either ASK1 or p38 MAPK activity. This is a fruitful future approach to the attenuation of physiological aspects of mammalian cardiomyopathies and aging.


1999 ◽  
Vol 276 (1) ◽  
pp. R128-R135 ◽  
Author(s):  
Christiaan Leeuwenburgh ◽  
Polly A. Hansen ◽  
John O. Holloszy ◽  
Jay W. Heinecke

Oxidative damage of proteins has been implicated in disease and aging. In vitro studies demonstrate that two unnatural amino acids, o,o′-dityrosine and o-tyrosine, are stable markers of protein oxidation. We have investigated the possibility that assaying these compounds in urine could provide a noninvasive way to determine levels of protein oxidation in vivo. Isotope dilution gas chromatography-mass spectrometry was used to quantify levels of o,o′-dityrosine and o-tyrosine in skeletal muscle and urine of aging rats subjected to two interventions: 1) dietary antioxidant supplementation and 2) exercise training. In both sedentary rats and exercise-trained rats, antioxidant therapy reduced levels of protein-bound o,o′-dityrosine in skeletal muscle. In contrast, antioxidant therapy or exercise training minimally affected o-tyrosine levels in this tissue. Levels of the oxidized amino acids in urine samples mirrored those of skeletal muscle proteins. Quantification of the levels of oxidized amino acids in urine may thus serve as a noninvasive measure of oxidative stress in vivo because they change in parallel with levels of protein-bound oxidized amino acids in skeletal muscle.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Vanessa Palermo ◽  
Fulvio Mattivi ◽  
Romano Silvestri ◽  
Giuseppe La Regina ◽  
Claudio Falcone ◽  
...  

In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determinein vivoefficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.


2019 ◽  
Vol 19 (2) ◽  
pp. 75-99 ◽  
Author(s):  
Nayana Keyla Seabra de Oliveira ◽  
Marcos Rafael Silva Almeida ◽  
Franco Márcio Maciel Pontes ◽  
Mariana Pegrucci Barcelos ◽  
Carlos Henrique Tomich de Paula da Silva ◽  
...  

Introduction:Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins.Methods:In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí.Results:Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function.Conclusion:This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 630 ◽  
Author(s):  
Sarah A. Scuderi ◽  
Alessio Ardizzone ◽  
Irene Paterniti ◽  
Emanuela Esposito ◽  
Michela Campolo

Neurodegenerative diseases (NDs) represents debilitating conditions characterized by degeneration of neuronal cells in specific brain areas, causing disability and death in patients. In the pathophysiology of NDs, oxidative stress, apoptosis and neuroinflammation have a key role, as demonstrated by in vivo and in vitro models. Therefore, the use of molecules with antioxidant and anti-inflammatory activities represents a possible strategy for the treatment of NDs. Many studies demonstrated the beneficial effects of fumaric acid esters (FAEs) to counteract neuroinflammation and oxidative stress. Among these molecules, dimethyl fumarate (DMF) showed a valid therapeutic approach to slow down neurodegeneration and relieve symptoms in patients with NDs. DMF is a methyl ester of fumaric acid and acts as modulator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation. Therefore, this review aims to examine the potential beneficial effects of DMF to counteract oxidative stress and inflammation in patients with NDs.


Sign in / Sign up

Export Citation Format

Share Document