scholarly journals Micromechanical Characterisation of 3D Bioprinted neural cell models using Brillouin Microscopy

2021 ◽  
Author(s):  
Maryam Alsadat Rad ◽  
Hadi Mahmodi ◽  
Elysse C. Filipe ◽  
Thomas R. Cox ◽  
Irina Kabakova ◽  
...  

AbstractBiofabrication of artificial 3D in vitro neural cell models that closely mimic the central nervous system (CNS) is an emerging field of research with applications from fundamental biology to regenerative medicine, and far reaching benefits for the economy, healthcare and the ethical use of animals. The micromechanical properties of such models are an important factor dictating the success of modelling outcomes in relation to accurate reproduction of the processes in native tissues. Characterising the micromechanical properties of such models non-destructively and over a prolonged span of time, however, are key challenges. Brillouin microscopy (BM) could provide a solution to this problem since this technology is non-invasive, label-free and is capable of microscale 3D imaging. In this work, the viscoelasticity of 3D bioprinted neural cell models consisting of NG 108-15 neuronal cells and GelMA hydrogels of various concentrations were investigated using BM. We demonstrate changes in the micro- and macro-scale mechanical properties of these models over a 7 day period, in which the hydrogel component of the model are found to soften as the cells grow, multiply and form stiffer spheroid-type structures. These findings signify the necessity to resolve in microscopic detail the mechanics of in vitro 3D tissue models and suggest Brillouin microscopy to be a suitable technology to bridge this gap.

2015 ◽  
Vol 24 (16) ◽  
pp. 1852-1864 ◽  
Author(s):  
Joshua G. Hunsberger ◽  
Anastasia G. Efthymiou ◽  
Nasir Malik ◽  
Mamta Behl ◽  
Ivy L. Mead ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3664
Author(s):  
Lidija Gradišnik ◽  
Roman Bošnjak ◽  
Tina Maver ◽  
Tomaž Velnar

The development of in vitro neural tissue analogs is of great interest for many biomedical engineering applications, including the tissue engineering of neural interfaces, treatment of neurodegenerative diseases, and in vitro evaluation of cell–material interactions. Since astrocytes play a crucial role in the regenerative processes of the central nervous system, the development of biomaterials that interact favorably with astrocytes is of great research interest. The sources of human astrocytes, suitable natural biomaterials, guidance scaffolds, and ligand patterned surfaces are discussed in the article. New findings in this field are essential for the future treatment of spinal cord and brain injuries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Inga Petersen ◽  
Rabea Schlüter ◽  
Katharina J. Hoff ◽  
Volkmar Liebscher ◽  
Gert Bange ◽  
...  

AbstractFluorescence-tags, commonly used to visualize the spatial distribution of proteins within cells, can influence the localization of the tagged proteins by affecting their stability, interaction with other proteins or the induction of oligomerization artifacts. To circumvent these obstacles, a protocol was developed to generate 50 nm thick serial sections suitable for immunogold labeling and subsequent reconstruction of the spatial distribution of immuno-labeled native proteins within individual bacterial cells. Applying this method, we show a cellular distribution of the staphylococcal alkaline shock protein 23 (Asp23), which is compatible with filament formation, a property of Asp23 that we also demonstrate in vitro.


2020 ◽  
Author(s):  
Lyan Abdul ◽  
Shravanthi Rajasekar ◽  
Dawn S.Y. Lin ◽  
Sibi Venkatasubramania Raja ◽  
Alexander Sotra ◽  
...  

AbstractThree-dimensional (3D) tissue models such as epithelial spheroids or organoids have become popular for pre-clinical drug studies. However, different from 2D monolayer culture, the characterization of 3D tissue models from non-invasive brightfield images is a significant challenge. To address this issue, here we report a Deep-Learning Uncovered Measurement of Epithelial Networks (Deep-LUMEN) assay. Deep-LUMEN is an object detection algorithm that has been fine-tuned to automatically uncover subtle differences in epithelial spheroid morphology from brightfield images. This algorithm can track changes in the luminal structure of tissue spheroids and distinguish between polarized and non-polarized lung epithelial spheroids. The Deep-LUMEN assay was validated by screening for changes in spheroid epithelial architecture in response to different extracellular matrices and drug treatments. Specifically, we found the dose-dependent toxicity of Cyclosporin can be underestimated if the effect of the drug on tissue morphology is not considered. Hence, Deep-LUMEN could be used to assess drug effects and capture morphological changes in 3D spheroid models in a non-invasive manner.Significance of the workDeep learning has been applied for the first time to autonomously detect subtle morphological changes in 3D multi-cellular spheroids, such as spheroid polarity, from brightfield images in a label-free manner. The technique has been validated by detecting changes in spheroid morphology in response to changes in extracellular matrices and drug treatments.


2021 ◽  
Author(s):  
Marius Kröger ◽  
Jörg Scheffel ◽  
Evgeny A. Shirshin ◽  
Johannes Schleusener ◽  
Martina C Meinke ◽  
...  

Macrophages (MΦs) are important immune effector cells that promote (M1 MΦs) or inhibit (M2 MΦs) inflammation and are involved in numerous physiological and pathogenic immune responses. Their precise role and relevance, however, is not fully understood because of the lack of non-invasive quantification methods. Here, we show that two-photon excited fluorescence lifetime imaging (TPE-FLIM), a label-free non-invasive method, can visualize MΦs in human dermis in vivo. We demonstrate in vitro that human dermal MΦs exhibit specific TPE-FLIM properties that distinguish them from the main components of the extracellular matrix and other dermal cells. We visualized MΦs, their phenotypes and phagocytosis in the skin of healthy individuals in vivo using TPE-FLIM. Additionally, machine learning identified M1 and M2 MΦs with a sensitivity of 0.88±0.04 and 0.82±0.03 and a specificity of 0.89±0.03 and 0.90±0.03, respectively. In clinical research, TPE-FLIM can advance the understanding of the role of MΦs in health and disease.


1985 ◽  
Vol 108 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Hidesuke Kaji ◽  
Kazuo Chihara ◽  
Naoto Minamitani ◽  
Hitoshi Kodama ◽  
Tetsuya Kita ◽  
...  

Abstract. The effect of [Asu]eel calcitonin (ECT), an equipotent analogue of eel CT, on prolactin (Prl) secretion was examined in 12 healthy male subjects and in 6 patients with prolactinoma. In healthy subjects, ECT (0.5 μg/kg body weight · h) or saline was infused for 2 h and TRH was injected iv as a bolus of 500 μg at 1 h of ECT or saline administration. ECT did not affect basal Prl levels during 1 h of infusion. TRH caused a significant increase of plasma Prl with peak values of 75.2 ± 11.6 ng/ml in ECT-infused subjects, which did not differ from those infused with saline (68.5 ± 8.3 ng/ml). Next, an iv bolus injection of regular insulin (0.1 U/kg body weight) was followed by an infusion of ECT or saline alone. Plasma Prl peaks after hypoglycaemic stress were significantly lower in ECT-infused subjects than those in saline-injected controls (ECT, 16.5 ± 3.1 vs 33.5 ± 9.6 ng/ml, P < 0.05). In patients with prolactinoma, basal levels of plasma Prl ranging from 42.0–4130 ng/ml failed to change during iv infusion of ECT. Moreover, ECT (10−9–10−6m) did not affect Prl release from prolactinoma tissues perifused in vitro. These findings suggest that ECT may not act directly on the pituitary to modify Prl release. Rather, peripherally administered ECT appears to suppress Prl release via the central nervous system.


GYNECOLOGY ◽  
2020 ◽  
Vol 21 (6) ◽  
pp. 36-40
Author(s):  
Anna G. Burduli ◽  
Natalia A. Kitsilovskaya ◽  
Yuliya V. Sukhova ◽  
Irina A. Vedikhina ◽  
Tatiana Y. Ivanets ◽  
...  

The review presents data on metabolites in the follicular fluid (FF) from the perspective of reproductive medicine and their use in order to predict outcomes of assisted reproductive technology (ART) programs. It considers various components of this biological medium (hormones, lipids, melatonin, etc.) with an assessment of their predictive value in prognosis of the effectiveness of in vitro fertilization (IVF) programs. The data on experimental directions in this field and the prospects for their use in clinical practice are presented. The article emphasizes that the growing clinical need and the unsolved problem of increasing the effectiveness of ART programs determine the need for further studies of the FF composition. Materials and methods. The review includes data related to this topic from foreign and Russian articles found in PubMed which were published in recent years. Results. Given the established fact of a direct effect of FF composition on growth and maturation of oocytes, and further, on the fertilization process, various FF metabolites are actively investigated as non-invasive markers of quality of oocytes/embryos. The article provides data on the experimental directions in this field and the prospects for their use in clinical practice. However, clinical studies of a relation between various FF metabolites levels and outcomes of IVF programs are contradictory. Conclusion. Owing large economic cost for treatment of infertility with IVF, there is need for expansion and intensification of studies to identify and use reliable predictors in prognosis of ART programs outcomes.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Ultrasonics ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 202-207 ◽  
Author(s):  
B. Audoin ◽  
C. Rossignol ◽  
N. Chigarev ◽  
M. Ducousso ◽  
G. Forget ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document