scholarly journals Advanced Bio-Based Polymers for Astrocyte Cell Models

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3664
Author(s):  
Lidija Gradišnik ◽  
Roman Bošnjak ◽  
Tina Maver ◽  
Tomaž Velnar

The development of in vitro neural tissue analogs is of great interest for many biomedical engineering applications, including the tissue engineering of neural interfaces, treatment of neurodegenerative diseases, and in vitro evaluation of cell–material interactions. Since astrocytes play a crucial role in the regenerative processes of the central nervous system, the development of biomaterials that interact favorably with astrocytes is of great research interest. The sources of human astrocytes, suitable natural biomaterials, guidance scaffolds, and ligand patterned surfaces are discussed in the article. New findings in this field are essential for the future treatment of spinal cord and brain injuries.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.



2015 ◽  
Vol 24 (16) ◽  
pp. 1852-1864 ◽  
Author(s):  
Joshua G. Hunsberger ◽  
Anastasia G. Efthymiou ◽  
Nasir Malik ◽  
Mamta Behl ◽  
Ivy L. Mead ◽  
...  


2021 ◽  
Vol 11 ◽  
Author(s):  
Franciele F. Scarante ◽  
Melissa A. Ribeiro ◽  
Ana F. Almeida-Santos ◽  
Francisco S. Guimarães ◽  
Alline C. Campos

Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is proposed to be useful. Mostly in vitro studies have indicated that CBD modulate the activation of proinflammatory pathways, energy metabolism, calcium homeostasis, and the proliferative rate of glial cells. Likewise, some of the molecular targets proposed for CBD actions are f expressed in glial cells, including pharmacological receptors such as CB1, CB2, PPAR-γ, and 5-HT1A. In the present review, we discuss the currently available evidence suggesting that part of the CBD effects are mediated by interference with glial cell function. We also propose additional studies that need to be performed to unveil the contribution of glial cells to CBD effects in neuropsychiatric disorders.



2021 ◽  
Author(s):  
Maryam Alsadat Rad ◽  
Hadi Mahmodi ◽  
Elysse C. Filipe ◽  
Thomas R. Cox ◽  
Irina Kabakova ◽  
...  

AbstractBiofabrication of artificial 3D in vitro neural cell models that closely mimic the central nervous system (CNS) is an emerging field of research with applications from fundamental biology to regenerative medicine, and far reaching benefits for the economy, healthcare and the ethical use of animals. The micromechanical properties of such models are an important factor dictating the success of modelling outcomes in relation to accurate reproduction of the processes in native tissues. Characterising the micromechanical properties of such models non-destructively and over a prolonged span of time, however, are key challenges. Brillouin microscopy (BM) could provide a solution to this problem since this technology is non-invasive, label-free and is capable of microscale 3D imaging. In this work, the viscoelasticity of 3D bioprinted neural cell models consisting of NG 108-15 neuronal cells and GelMA hydrogels of various concentrations were investigated using BM. We demonstrate changes in the micro- and macro-scale mechanical properties of these models over a 7 day period, in which the hydrogel component of the model are found to soften as the cells grow, multiply and form stiffer spheroid-type structures. These findings signify the necessity to resolve in microscopic detail the mechanics of in vitro 3D tissue models and suggest Brillouin microscopy to be a suitable technology to bridge this gap.



2020 ◽  
Vol 21 (21) ◽  
pp. 8028 ◽  
Author(s):  
Scott P. Allen ◽  
Rajpinder Singh Seehra ◽  
Paul R. Heath ◽  
Benjamin P. C. Hall ◽  
Jessica Bates ◽  
...  

Hypoxia is a feature of neurodegenerative diseases, and can both directly and indirectly impact on neuronal function through modulation of glial function. Astrocytes play a key role in regulating homeostasis within the central nervous system, and mediate hypoxia-induced changes in response to reduced oxygen availability. The current study performed a detailed characterization of hypoxia-induced changes in the transcriptomic profile of astrocytes in vitro. Human astrocytes were cultured under normoxic (5% CO2, 95% air) or hypoxic conditions (1% O2, 5% CO2, 94% N2) for 24 h, and the gene expression profile assessed by microarray analysis. In response to hypoxia 4904 genes were significantly differentially expressed (1306 upregulated and 3598 downregulated, FC ≥ 2 and p ≤ 0.05). Analysis of the significant differentially expressed transcripts identified an increase in immune response pathways, and dysregulation of signalling pathways, including HIF-1 (p = 0.002), and metabolism, including glycolysis (p = 0.006). To assess whether the hypoxia-induced metabolic gene changes observed affected metabolism at a functional level, both the glycolytic and mitochondrial flux were measured using an XF bioanalyser. In support of the transcriptomic data, under physiological conditions hypoxia significantly reduced mitochondrial respiratory flux (p = 0.0001) but increased basal glycolytic flux (p = 0.0313). However, when metabolically stressed, hypoxia reduced mitochondrial spare respiratory capacity (p = 0.0485) and both glycolytic capacity (p = 0.0001) and glycolytic reserve (p < 0.0001). In summary, the current findings detail hypoxia-induced changes in the astrocyte transcriptome in vitro, identifying potential targets for modifying the astrocyte response to reduced oxygen availability in pathological conditions associated with ischaemia/hypoxia, including manipulation of mitochondrial function, metabolism, and the immune response.



2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.



1985 ◽  
Vol 108 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Hidesuke Kaji ◽  
Kazuo Chihara ◽  
Naoto Minamitani ◽  
Hitoshi Kodama ◽  
Tetsuya Kita ◽  
...  

Abstract. The effect of [Asu]eel calcitonin (ECT), an equipotent analogue of eel CT, on prolactin (Prl) secretion was examined in 12 healthy male subjects and in 6 patients with prolactinoma. In healthy subjects, ECT (0.5 μg/kg body weight · h) or saline was infused for 2 h and TRH was injected iv as a bolus of 500 μg at 1 h of ECT or saline administration. ECT did not affect basal Prl levels during 1 h of infusion. TRH caused a significant increase of plasma Prl with peak values of 75.2 ± 11.6 ng/ml in ECT-infused subjects, which did not differ from those infused with saline (68.5 ± 8.3 ng/ml). Next, an iv bolus injection of regular insulin (0.1 U/kg body weight) was followed by an infusion of ECT or saline alone. Plasma Prl peaks after hypoglycaemic stress were significantly lower in ECT-infused subjects than those in saline-injected controls (ECT, 16.5 ± 3.1 vs 33.5 ± 9.6 ng/ml, P < 0.05). In patients with prolactinoma, basal levels of plasma Prl ranging from 42.0–4130 ng/ml failed to change during iv infusion of ECT. Moreover, ECT (10−9–10−6m) did not affect Prl release from prolactinoma tissues perifused in vitro. These findings suggest that ECT may not act directly on the pituitary to modify Prl release. Rather, peripherally administered ECT appears to suppress Prl release via the central nervous system.



Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.



Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P &lt; 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P &lt; 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P &lt; 0.05) and its activity at 4 and 1 hpa, respectively (P &lt; 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P &lt; 0.05); however, its kinase activity decreased at 6 hpf (P &lt; 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P &lt; 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.



Sign in / Sign up

Export Citation Format

Share Document