scholarly journals Comparative Molecular Genomic Analyses of a Spontaneous Rhesus Macaque Model of Mismatch Repair-Deficient Colorectal Cancer

2021 ◽  
Author(s):  
Nejla Ozirmak Lermi ◽  
Stanton B. Gray ◽  
Charles M. Bowen ◽  
Laura Reyes-Uribe ◽  
Beth K. Dray ◽  
...  

AbstractColorectal cancer (CRC) remains the third most common cancer in the US with 15% of cases displaying Microsatellite Instability (MSI) secondary to Lynch Syndrome (LS) or somatic hypermethylation of the MLH1 promoter. A cohort of rhesus macaques from our institution developed spontaneous mismatch repair deficient (MMRd) CRC with a notable fraction harboring a pathogenic germline mutation in MLH1 (c.1029C<G, p.Tyr343Ter). Our study incorporated a detailed molecular characterization of rhesus CRC for cross-comparison with human MMRd CRC. We performed PCR-based MSI testing, transcriptomic analysis, and reduced-representation bisulfite sequencing (RRBS) of rhesus CRC (n=41 samples) using next-generation sequencing (NGS). Systems biology pipelines were used for gene set enrichment analysis (GSEA) for pathway discovery, consensus molecular subtyping (CMS), and somatic mutation profiling. Overall, the majority of rhesus tumors displayed high levels of MSI (MSI-high) and differential gene expression profiles that were consistent with known deregulated pathways in human CRC. DNA methylation analysis exposed differentially methylated patterns among MSI-H, MSI-L (MSI-low)/MSS (MS-stable) and LS tumors with MLH1 predominantly inactivated among sporadic MSI-H CRCs. The findings from this study support the use of rhesus macaques as the preferred animal model to study carcinogenesis, develop immunotherapies and vaccines, and implement chemoprevention approaches pertinent to sporadic MSI-H and LS CRC in humans.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2809
Author(s):  
Paolo Uva ◽  
Maria Carla Bosco ◽  
Alessandra Eva ◽  
Massimo Conte ◽  
Alberto Garaventa ◽  
...  

Neuroblastoma (NB) is one of the deadliest pediatric cancers, accounting for 15% of deaths in childhood. Hypoxia is a condition of low oxygen tension occurring in solid tumors and has an unfavorable prognostic factor for NB. In the present study, we aimed to identify novel promising drugs for NB treatment. Connectivity Map (CMap), an online resource for drug repurposing, was used to identify connections between hypoxia-modulated genes in NB tumors and compounds. Two sets of 34 and 21 genes up- and down-regulated between hypoxic and normoxic primary NB tumors, respectively, were analyzed with CMap. The analysis reported a significant negative connectivity score across nine cell lines for 19 compounds mainly belonging to the class of PI3K/Akt/mTOR inhibitors. The gene expression profiles of NB cells cultured under hypoxic conditions and treated with the mTORC complex inhibitor PP242, referred to as the Mohlin dataset, was used to validate the CMap findings. A heat map representation of hypoxia-modulated genes in the Mohlin dataset and the gene set enrichment analysis (GSEA) showed an opposite regulation of these genes in the set of NB cells treated with the mTORC inhibitor PP242. In conclusion, our analysis identified inhibitors of the PI3K/Akt/mTOR signaling pathway as novel candidate compounds to treat NB patients with hypoxic tumors and a poor prognosis.


2008 ◽  
Vol 36 (04) ◽  
pp. 783-797 ◽  
Author(s):  
Wen-Yu Cheng ◽  
Shih-Lu Wu ◽  
Chien-Yun Hsiang ◽  
Chia-Cheng Li ◽  
Tung-Yuan Lai ◽  
...  

Traditional Chinese medicine (TCM) has been used for thousands of years. Most Chinese herbal formulae consist of several herbal components and have been used to treat various diseases. However, the mechanisms of most formulae and the relationship between formulae and their components remain to be elucidated. Here we analyzed the putative mechanism of San-Huang-Xie-Xin-Tang (SHXXT) and defined the relationship between SHXXT and its herbal components by microarray technique. HepG2 cells were treated with SHXXT or its components and the gene expression profiles were analyzed by DNA microarray. Gene set enrichment analysis indicated that SHXXT and its components displayed a unique anti-proliferation pattern via p53 signaling, p53 activated, and DNA damage signaling pathways in HepG2 cells. Network analysis showed that most genes were regulated by one molecule, p53. In addition, hierarchical clustering analysis showed that Rhizoma Coptis shared a similar gene expression profile with SHXXT. These findings may explain why Rhizoma Coptis is the principle herb that exerts the major effect in the herbal formula, SHXXT. Moreover, this is the first report to reveal the relationship between formulae and their herbal components in TCM by microarray and bioinformatics tools.


Author(s):  
Si Cheng ◽  
Zhe Li ◽  
Wenhao Zhang ◽  
Zhiqiang Sun ◽  
Zhigang Fan ◽  
...  

Skin cutaneous melanoma (SKCM) is the major cause of death for skin cancer patients, its high metastasis often leads to poor prognosis of patients with malignant melanoma. However, the molecular mechanisms underlying metastatic melanoma remain to be elucidated. In this study we aim to identify and validate prognostic biomarkers associated with metastatic melanoma. We first construct a co-expression network using large-scale public gene expression profiles from GEO, from which candidate genes are screened out using weighted gene co-expression network analysis (WGCNA). A total of eight modules are established via the average linkage hierarchical clustering, and 111 hub genes are identified from the clinically significant modules. Next, two other datasets from GEO and TCGA are used for further screening of biomarker genes related to prognosis of metastatic melanoma, and identified 11 key genes via survival analysis. We find that IL10RA has the highest correlation with clinically important modules among all identified biomarker genes. Further in vitro biochemical experiments, including CCK8 assays, wound-healing assays and transwell assays, have verified that IL10RA can significantly inhibit the proliferation, migration and invasion of melanoma cells. Furthermore, gene set enrichment analysis shows that PI3K-AKT signaling pathway is significantly enriched in metastatic melanoma with highly expressed IL10RA, indicating that IL10RA mediates in metastatic melanoma via PI3K-AKT pathway.


2021 ◽  
Author(s):  
Lingyu Zhang ◽  
Yu Li ◽  
Yibei Dai ◽  
Danhua Wang ◽  
Xuchu Wang ◽  
...  

Abstract Metabolic pattern reconstruction is an important element in tumor progression. The metabolism of tumor cells is characterized by the abnormal increase of anaerobic glycolysis, regardless of the higher oxygen concentration, resulting in a large accumulation of energy from glucose sources, and contributes to rapid cell proliferation and tumor growth which is further referenced as the Warburg effect. We tried to reconstruct the metabolic pattern in the progression of cancer to screen which genetic changes are specific in cancer cells. A total of 12 common types of solid tumors were enrolled in the prospective study. Gene set enrichment analysis (GSEA) was implemented to analyze 9 glycolysis-related gene sets, which are closely related to the glycolysis process. Univariate and multivariate analyses were used to identify independent prognostic variables for the construction of a nomogram based on clinicopathological characteristics and a glycolysis-related gene prognostic index (GRGPI). The prognostic model based on glycolysis genes has the highest area under the curve (AUC) in LIHC (Liver hepatocellular carcinoma). 8-gene signatures (AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were related to overall survival (OS) and recurrence-free survival (RFS). Further analysis demonstrates that the prediction model can accurately distinguish between high- and low-risk cancer patients among patients in different clusters in LIHC. A nomogram with a well-fitted calibration curve based on gene expression profiles and clinical characteristics improves discrimination in internal and external cohorts. Furthermore, the altering expression of metabolic genes related to glycolysis may contribute to the reconstruction of the tumor-related microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juexing Li ◽  
Lei Zhou ◽  
Zhenhua Li ◽  
Shangneng Yang ◽  
Liangyue Tang ◽  
...  

Sepsis-induced cardiomyopathy (SIC), with a possibly reversible cardiac dysfunction, is a potential complication of septic shock. Despite quite a few mechanisms including the inflammatory mediator, exosomes, and mitochondrial dysfunction, having been confirmed in the existing research studies we still find it obscure about the overall situation of gene co-expression that how they can affect the pathological process of SIC. Thus, we intended to find out the crucial hub genes, biological signaling pathways, and infiltration of immunocytes underlying SIC. It was weighted gene co-expression network analysis that worked as our major method on the ground of the gene expression profiles: hearts of those who died from sepsis were compared to hearts donated by non-failing humans which could not be transplanted for technical reasons (GSE79962). The top 25 percent of variant genes were abstracted to identify 10 co-expression modules. In these modules, brown and green modules showed the strongest negative and positive correlation with SIC, which were primarily enriched in the bioenergy metabolism, immunoreaction, and cell death. Next, nine genes (LRRC39, COQ10A, FSD2, PPP1R3A, TNFRSF11B, IL1RAP, DGKD, POR, and THBS1) including two downregulated and seven upregulated genes which were chosen as hub genes that meant the expressive level of which was higher than the counterparts in control groups. Then, the gene set enrichment analysis (GSEA) demonstrated a close relationship of hub genes to the cardiac metabolism and the necroptosis and apoptosis of cells in SIC. Concerning immune cells infiltration, a higher level of neutrophils and B cells native and a lower level of mast cells resting and plasma cells had been observed in patients with SIC. In general, nine candidate biomarkers were authenticated as a reliable signature for deeper exploration of basic and clinical research studies on SIC.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Qingyu Liang ◽  
Gefei Guan ◽  
Xue Li ◽  
Chunmi Wei ◽  
Jianqi Wu ◽  
...  

Abstract Background Molecular classification has laid the framework for exploring glioma biology and treatment strategies. Pro-neural to mesenchymal transition (PMT) of glioma is known to be associated with aggressive phenotypes, unfavorable prognosis, and treatment resistance. Recent studies have highlighted that long non-coding RNAs (lncRNAs) are key mediators in cancer mesenchymal transition. However, the relationship between lncRNAs and PMT in glioma has not been systematically investigated. Methods Gene expression profiles from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, and Rembrandt with available clinical and genomic information were used for analyses. Bioinformatics methods such as weighted gene co-expression network analysis (WGCNA), gene set enrichment analysis (GSEA), Cox analysis, and least absolute shrinkage and selection operator (LASSO) analysis were performed. Results According to PMT scores, we confirmed that PMT status was positively associated with risky behaviors and poor prognosis in glioma. The 149 PMT-related lncRNAs were identified by WGCNA analysis, among which 10 (LINC01057, TP73-AS1, AP000695.4, LINC01503, CRNDE, OSMR-AS1, SNHG18, AC145343.2, RP11-25K21.6, RP11-38L15.2) with significant prognostic value were further screened to construct a PMT-related lncRNA risk signature, which could divide cases into two groups with distinct prognoses. Multivariate Cox regression analyses indicated that the signature was an independent prognostic factor for high-grade glioma. High-risk cases were more likely to be classified as the mesenchymal subtype, which confers enhanced immunosuppressive status by recruiting macrophages, neutrophils, and regulatory T cells. Moreover, six lncRNAs of the signature could act as competing endogenous RNAs to promote PMT in glioblastoma. Conclusions We profiled PMT status in glioma and established a PMT-related 10-lncRNA signature for glioma that could independently predict glioma survival and trigger PMT, which enhanced immunosuppression.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Ellen K. Kendall ◽  
Manishkumar S. Patel ◽  
Sarah Ondrejka ◽  
Agrima Mian ◽  
Yazeed Sawalha ◽  
...  

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. While 60% of DLBCL patients achieve complete remission with frontline therapy, relapsed/refractory (R/R) DLBCL patients have a poor prognosis with median overall survival below one year, necessitating investigation into the biological principles that distinguish cured from R/R DLBCL. Recent analyses have identified unfavorable molecular signatures when accounting for gene expression, copy number alterations and mutational profiles in R/R DLBCL. However, an integrative analysis of the relationship between epigenetic and transcriptomic changes has yet to be described. In this study, we compared baseline methylation and gene expression profiles of DLBCL patients with dichotomized clinical outcomes. Methods: Diagnostic DLBCL biopsies were obtained from two patient cohorts: patients who relapsed or were refractory following chemoimmunotherapy ("R/R"), and patients who entered durable clinical remission following therapy ("cured"). The median age for R/R and cured cohorts were 62 (range 35-86) years vs. 64 (range 28-83) years (P= 0.27). High-intermediate or high IPI scores were present in 14 vs. 6 patients (P= 0.08) in the R/R and cured cohorts, respectively. All patients were treated with frontline R-CHOP or R-EPOCH. DNA and RNA were extracted simultaneously from formalin-fixed, paraffin embedded biopsy samples. An Illumina 850k Methylation Array was used to identify DNA methylation levels in 29 R/R patients and 20 cured patients. RNA sequencing was performed on 9 R/R patients and 7 cured patients at diagnosis using Illumina HiSeq4000. Differentially methylated probes were identified using the DMRcate package, and differentially expressed genes were identified using the DESeq2 package. Gene set enrichment analysis was performed using canonical pathway gene sets from MSigDB. Results: At the time of diagnosis, we found significant epigenetic and transcriptomic differences between cured and R/R patients. Comparing cured to R/R samples, there were 8,159 differentially methylated probes (FDR&lt;0.05). Differentially methylated regions between R/R and cured cohorts overlap with genes previously identified as mutation hotspots in DLBCL. Upon comparing transcriptomic profiles between R/R and cured, 267 genes were found to be differentially expressed (Log2FC&gt;|1| and FDR&lt;0.05). Gene set enrichment analysis revealed gene sets related to cell cycle, membrane trafficking, Rho and Rab family GTPase function, and transcriptional regulation were upregulated in the R/R samples. Gene sets related to innate immune signaling, Type I and II interferon signaling, fatty acid and carbohydrate metabolism were upregulated in the cured samples. To identify genes likely to be regulated by specific changes in methylation, we selected genes that were both differentially expressed and differentially methylated between the R/R and cured cohorts. In the R/R samples, 13 genes (ARMC5, ARRDC1, C12orf57, CCSER1, D2HGDH, DUOX2, FAM189B, FKBP2, KLF5, MFSD10, NEK8, NT5C, and WDR18) were significantly hypermethylated and underexpressed when compared to cured specimens, suggesting that epigenetic silencing of these genes is associated with lack of response to chemoimmunotherapy. In contrast, 12 genes (ATP2B1, C15orf41, FAM102B, FAM3C, FHOD3, FYTTD1, GPR180, KIAA1841, LRMP, MEF2A, RRAS2, and TPD52) were significantly hypermethylated and underexpressed in cured patients, suggesting that epigenetic silencing of these genes is favorable for treatment response. Many of these epigenetically modified genes have been previously implicated in cancer biology, including roles in NOTCH signaling, chromosomal instability, and biomarkers of prognosis. Conclusions: This is the first integrative epigenetic and transcriptomic analysis of diagnostic biopsies from cured and R/R DLBCL patients following chemoimmunotherapy. At the time of diagnosis, both the methylation and gene expression profiles significantly differ between patients that enter durable remission as opposed to those who are R/R to therapy. Soon, the hypomethylating agent CC-486 (i.e. oral azacitidine) will be explored in combination with mini-R-CHOP for older DLBCL patients in whom DNA methylation is likely increased. These data support the use of hypomethylating agents to potentially restore sensitivity of DLBCL to chemoimmunotherapy. Disclosures Hsi: Eli Lilly: Research Funding; Abbvie: Research Funding; Miltenyi: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; CytomX: Consultancy, Honoraria. Hill:Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria; Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; AstraZenica: Consultancy, Honoraria, Research Funding; Pharmacyclics: Consultancy, Honoraria, Research Funding; Takeda: Research Funding; Beigene: Consultancy, Honoraria, Research Funding; Genentech: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110166
Author(s):  
Hanxu Guo ◽  
Zhichao Zhang ◽  
Yuhang Wang ◽  
Sheng Xue

Objective Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study aimed to use bioinformatics to screen for core genes and biological pathways related to PCa. Methods The GSE5957 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were constructed by R language. Furthermore, protein–protein interaction (PPI) networks were generated to predict core genes. The expression levels of core genes were examined in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool was used to study the co-expression and prognostic factors of the core genes. Finally, the core genes of signaling pathways were determined using gene set enrichment analysis (GSEA). Results Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24 core genes have significant association with carcinogenesis and development . LONRF1, CDK1, RPS18, GNB2L1 ( RACK1), RPL30, and SEC61A1 directly related to the recurrence and prognosis of PCa. Conclusions This study identified the core genes and pathways in PCa and provides candidate targets for diagnosis, prognosis, and treatment.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 850
Author(s):  
Marcello Del Corvo ◽  
Silvia Bongiorni ◽  
Bruno Stefanon ◽  
Sandy Sgorlon ◽  
Alessio Valentini ◽  
...  

Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on metabolism and immune response is well known, but the underlying epigenetic mechanisms require further investigation. In this study, we compared DNA methylation and gene expression signatures between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals. The high and low groups exhibited similar amounts of methylated CpGs, while we found differences among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis showed that genes of both groups act together in several pathways, such as nervous system activity, immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that, in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral changes in methylation can provide an insight into central nervous system functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Houxi Xu ◽  
Yuzhu Ma ◽  
Jinzhi Zhang ◽  
Jialin Gu ◽  
Xinyue Jing ◽  
...  

Colorectal cancer, a malignant neoplasm that occurs in the colorectal mucosa, is one of the most common types of gastrointestinal cancer. Colorectal cancer has been studied extensively, but the molecular mechanisms of this malignancy have not been characterized. This study identified and verified core genes associated with colorectal cancer using integrated bioinformatics analysis. Three gene expression profiles (GSE15781, GSE110223, and GSE110224) were downloaded from the Gene Expression Omnibus (GEO) databases. A total of 87 common differentially expressed genes (DEGs) among GSE15781, GSE110223, and GSE110224 were identified, including 19 upregulated genes and 68 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed for common DEGs using clusterProfiler. These common DEGs were significantly involved in cancer-associated functions and signaling pathways. Then, we constructed protein-protein interaction networks of these common DEGs using Cytoscape software, which resulted in the identification of the following 10 core genes: SST, PYY, CXCL1, CXCL8, CXCL3, ZG16, AQP8, CLCA4, MS4A12, and GUCA2A. Analysis using qRT-PCR has shown that SST, CXCL8, and MS4A12 were significant differentially expressed between colorectal cancer tissues and normal colorectal tissues (P<0.05). Gene Expression Profiling Interactive Analysis (GEPIA) overall survival (OS) has shown that low expressions of AQP8, ZG16, CXCL3, and CXCL8 may predict poor survival outcome in colorectal cancer. In conclusion, the core genes identified in this study contributed to the understanding of the molecular mechanisms involved in colorectal cancer development and may be targets for early diagnosis, prevention, and treatment of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document