scholarly journals Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction

2021 ◽  
Author(s):  
Igor N Zelko ◽  
Sujith Dassanayaka ◽  
Marina V Malovichko ◽  
Caitlin M Howard ◽  
Lauren F Garrett ◽  
...  

Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Federica Rota ◽  
Luca Ferrari ◽  
Mirjam Hoxha ◽  
Chiara Favero ◽  
Rita Antonioli ◽  
...  

AbstractThe release of Extracellular Vesicles (EVs) into the bloodstream is positively associated with Particulate Matter (PM) exposure, which is involved in endothelial dysfunction and related to increased risk of cardiovascular disease. Obesity modifies the effects of PM exposure on heart rate variability and markers of inflammation, oxidative stress, and acute phase response. We isolated and characterized plasmatic EVs from six healthy donors and confirmed a positive association with PM exposure. We stratified for Body Mass Index (BMI) and observed an increased release of CD61+ (platelets) and CD105+ (endothelium) derived-EVs after high PM level exposure in Normal Weight subjects (NW) and no significant variations in Overweight subjects (OW). We then investigated the ability to activate endothelial primary cells by plasmatic EVs after both high and low PM exposure. NW-high-PM EVs showed an increased endothelial activation, measured as CD105+/CD62e+ (activated endothelium) EVs ratio. On the contrary, cells treated with OW-high-PM EVs showed reduced endothelial activation. These results suggest the ability of NW plasmatic EVs to communicate to endothelial cells and promote the crosstalk between activated endothelium and peripheral cells. However, this capacity was lost in OW subjects. Our findings contribute to elucidate the role of EVs in endothelial activation after PM exposure.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Rajika Roy ◽  
Santhanam Shanmughapriya ◽  
Xueqian Zhang ◽  
Jianliang Song ◽  
Dhanendra Tomar ◽  
...  

Cardiac contractility is regulated by the intracellular Ca 2+ concentration fluxes which are actively regulated by multiple channels and transporters. Ca 2+ uptake into the mitochondrial matrix is precisely controlled by the highly Ca 2+ selective channel, Mitochondrial Calcium Uniporter (MCU). Earlier studies on the cardiac-specific acute MCU knockout and a transgenic dominant-negative MCU mice have demonstrated that mitochondrial Ca 2+ ( m Ca 2+ ) signaling is necessary for cardiac ‘‘fight-or-flight’’ contractile response, however, the role of m Ca 2+ buffering to shape global cytosolic Ca 2+ levels and affect E-C coupling, particularly the Ca 2+ transient, on a beat-to-beat basis still remains to be solved. Our earlier studies have demonstrated that loss of MCU Regulator 1 (MCUR1) in cardiomyocytes results in the impaired m Ca 2+ uptake. We have now employed the cardiac-specific MCUR1 knockout mouse to dissect the precise role of MCU in regulating cytosolic Ca 2+ transients associated with excitation-contraction (E-C) coupling and cardiac function. Results from our studies including the in vivo analyses of cardiac physiology during normal and pressure-overloaded mouse models and in vitro experiments including single-cell cardiac contractility, calcium transients, and electrophysiology measurements demonstrate that MCUR1/MCU regulated m Ca 2+ buffering in cardiomyocytes, although insignificant under basal condition, becomes critical in stress induced conditions and actively participates in regulating the c Ca 2+ transients. Also, the ablation of MCUR1 in cardiomyocytes during stress conditions prevents m Ca 2+ overload and subsequent mROS overproduction. Our data indicate that MCUR1 ablation offers protection against pressure-overload cardiac hypertrophy. In summary, our results provide critical insights into the mechanisms by which the MCU channel contributes in regulating the contractile function of the cardiomyocytes and the role of m Ca 2+ in the development and progression of heart failure.


2020 ◽  
Vol 18 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Triantafyllos Didangelos ◽  
Konstantinos Kantartzis

The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Foulkes ◽  
B Costello ◽  
E.J Howden ◽  
K Janssens ◽  
H Dillon ◽  
...  

Abstract Background Young cancer survivors are at increased risk of impaired cardiopulmonary fitness (VO2peak) and heart failure. Assessment of exercise cardiac reserve may reveal sub-clinical abnormalities that better explain impairments in fitness and long term heart failure risk. Purpose To investigate the presence of impaired VO2peak in pediatric cancer survivors with increased risk of heart failure, and to assess its relationship with resting cardiac function and cardiac reserve Methods Twenty pediatric cancer survivors (aged 8–24 years) treated with anthracycline chemotherapy underwent cardiopulmonary exercise testing to quantify VO2peak, with a value <85% of predicted defined as impaired VO2peak. Resting cardiac function was assessed using 3-dimensional echocardiography, with cardiac reserve quantified from resting and peak exercise heart rate (HR), stroke volume index (SVi) and cardiac index (CI) using exercise cardiac magnetic resonance imaging. Results 12 of 20 survivors (60%) had impaired VO2peak (97±14% vs. 70±16% of age and gender predicted). There were no differences in echocardiographic or CMR measurements of resting cardiac function between survivors with normal or impaired VO2peak. However, those with reduced VO2peak had diminished cardiac reserve, with a lesser increase in CI (Fig. 1A) and SVi (Fig. 1B) during exercise (Interaction P=0.001 for both), whilst the HR response was similar (Fig. 1C; P=0.71). Conclusions Resting measures of cardiac function are insensitive to significant cardiac dysfunction amongst pediatric cancer survivors with reduced VO2peak. Measures of cardiopulmonary fitness and cardiac reserve may aid in early identification of survivors with heightened risk of long-term heart failure. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Heart Foundation


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sven T Pleger ◽  
Changguang Shan ◽  
Jan Kziencek ◽  
Oliver Mueller ◽  
Raffi Bekeredjian ◽  
...  

Background: Cardiac expression of the Ca-dependent inotropic protein S100A1 is decreased in human end-stage heart failure (HF) and cardiomyocyte-targeted viral-based S100A1 gene transfer rescued failing myocardium in small animal models in vivo and in vitro via improved systolic and diastolic sarcoplasmic reticulum Ca-handling. We therefore hypothesized that cardioselective AAV9-S100A1 gene therapy will improve cardiac performance in a large animal experimental HF model under clinical conditions. Methods and Results: Left ventricular (LV) posterolateral myocardial infarction (MI) was induced in pigs by occlusion of the left coronary circumflex artery and resulted in LV failure (HF) 2 weeks post-MI reflected by a 40% and 27% reduction in LV +dp/dt max. and EF, respectively, as assessed by LV catheterization and echocardiography. Post-MI HF pigs were then randomized for retroinfusion of AAV9-luciferase (luc; n=6, 1.5×10 13 total viral particles, tvp) and AAV9-S100A1 (S100A1; n=6, 1.5×10 13 tvp) driven by a cardioselective promoter via the anterior cardiac vein while the left anterior descending artery was temporarily occluded. 14 weeks after cardiac gene transfer, the S100A1-treated HF group showed significantly enhanced S100A1 protein expression (+46.7±17.9%, P<0.05 vs. control groups) in targeted remote LV myocardium and improved indices of cardiac function and remodeling (luc vs. S100A1: +dp/dtmax: 983±81 vs. 1526±83 mmHg/s, EF: 39±2.1 vs. 61±3.7 %, P<0.05 S100A1 vs. luc, LV endsystolic diameter: luc 4.45±0.1 vs. S100A1 3.43 ±0.1 cm, P<0.05 S100A1 vs. luc, HR: 72±4 vs. 69±2, beats/min, P=n.s. S100A1 vs. luc). Importantly, analyses of renal, hepatic and hematopoetic function showed no alteration as assessed by unchanged transaminases, retention values and white blood cell counts compared to sham pigs. Conclusions: Our translational study provides proof of concept that AAV9-S100A1 based HF gene therapy is feasible and restores cardiac function in a large animal HF model under clinical conditions. Next, certified toxicological analysis and different AAV9-S100A1 dosage protocols will be assessed to eventually advance to first phase I/II clinical studies determining therapeutic efficiency of cardiac S100A1 gene therapy in HF patients.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Magda C. Diaz ◽  
Raúl Flores-Vergara ◽  
Ivonne Olmedo ◽  
Zully Pedrozo

Background: Transverse tubules (T-tubules) play a key role in cardiac contractility. The expression of Bridging integrator 1 (BIN1), specifically, the cardiac isoforms BIN1+13 and BIN1+ 13+17 promote the formation and ultrastructure of T-tubules and it has been described that the transcriptional factor c-Myc may be a negative regulator of BIN1 expression. Polycystin-1 (PC1) is a mechanosensor in cardiomyocytes, with a crucial role to maintain cardiac function. Our aim was to determine whether PC1 regulates BIN1-induced T-tubule formation by a c-Myc-regulated mechanism. Methods: We used adult C57BL/6 cardiomyocyte-specific knockout mice (PC1 KO). Cardiac function was tested by echocardiography, whereas protein and mRNA content of BIN1, PC1 and c-Myc were measured using western blot and qRT-PCR, respectively. T-tubules were analyzed by transmission electron microscopy (TEM). For statistical analyses, t-test or one-way ANOVA followed by Tukey's test were used. Differences were considered significant at p < 0.05. Results: Survival of PC1 KO mice decreased dramatically after 7 months of age, with clear symptoms of dilated cardiomyopathy and heart failure (decreased fractional shortening and ejection fraction). Ventricular cardiac tissue of PC1 KO mice without (< 7-month-old mice) and with symptoms (7-9-month-old mice) of heart failure (HF) was associated with reduced levels of BIN1 protein content. Total BIN1 mRNA in PC1 KO mice without symptoms did not show differences as compared to controls, but it was significantly decreased in mice with symptoms of HF. Moreover, PC1 KO mice with and without symptoms showed decreased BIN1+13 mRNA levels, whereas BIN1+13+17 mRNA was only increased in mice without symptoms. These changes in BIN1 isoforms were related with T-tubules, which showed increased lumen and decreased intra-luminal density in PC1 KO mice with and without symptoms. Furthermore, c-Myc protein content was increased in cardiac tissue of PC1 KO mice. Conclusion: PC1 may be a regulator of the differential expression of cardiac isoforms of BIN1 in cardiomyocytes by a mechanism that involves negative regulation of c-Myc, related to loss of T-tubule ultrastructure and heart failure development.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Ishita Chatterjee ◽  
Kishore K Wary

Rationale: A recent genome-wide association study (GWAS) has linked a frequently occurring variation in the LPP3 (also known as PPAP2b) loci to increased risk of coronary heart disease (CAD). However, the in vivo function of LPP3 in vascular endothelial cell is incompletely understood. Goal: To address the endothelial cell (EC) specific function of Lpp3 in mice. Results: Tie-2/Cre mediated Lpp3 deletion did not affect normal vasculogenesis in early embryonic development, in contrast, in late embryonic stages it led to impaired angiogenesis associated with hemorrhage, edema and late embryonic lethal phenotype. Immunohistochemical staining followed by microscopic analyses of mutant embryos revealed reduced fibronectin and VE-cadherin expression throughout different vascular bed, and increased apoptosis in CD31+ vascular structures. Transmission electron microscopy (TEM) showed the presence of apoptotic endothelial cells and disruption of adherens junctions in mutant embryos. LPP3-knockdown in vitro showed an increase in p53 and p21 protein levels, with concomitant decrease in cell proliferation. LPP3-knockdown also decreased transendothelial electrical resistance (TER), interestingly re-expression of ß-catenin cDNA into LPP3-depleted endothelial cells partially restored the effect of loss of LPP3. Conclusion: These results suggest the ability of LPP3 to regulate survival and apoptotic activities of endothelial cells during patho/physiological angiogenesis.


2017 ◽  
Vol 38 (5) ◽  
pp. 888-903 ◽  
Author(s):  
Allison M Andrews ◽  
Evan M Lutton ◽  
Lee A Cannella ◽  
Nancy Reichenbach ◽  
Roshanak Razmpour ◽  
...  

Endothelial cells (ECs) form the basis of the blood–brain barrier (BBB), a physical barrier that selectively restricts transport into the brain. In vitro models can provide significant insight into BBB physiology, mechanisms of human disease pathology, toxicology, and drug delivery. Given the limited availability of primary human adult brain microvascular ECs ( aBMVECs), human fetal tissue offers a plausible alternative source for multiple donors and the opportunity to build syngenic tri-cultures from the same host. Previous efforts to culture fetal brain microvascular ECs ( fBMVECs) have not been successful in establishing mature barrier properties. Using optimal gestational age for isolation and flow cytometry cell sorting, we show for the first time that fBMVECs demonstrate mature barrier properties. fBMVECs exhibited similar functional phenotypes when compared to aBMVECs for barrier integrity, endothelial activation, and gene/protein expression of tight junction proteins and transporters. Importantly, we show that tissue used to culture fBMVECs can also be used to generate a syngenic co-culture, creating a microfluidic BBB on a chip. The findings presented provide a means to overcome previous challenges that limited successful barrier formation by fBMVECs. Furthermore, the source is advantageous for autologous reconstitution of the neurovascular unit for next generation in vitro BBB modeling.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin-Tong Wang ◽  
Zhen Peng ◽  
Ying-Ying An ◽  
Ting Shang ◽  
Guangxu Xiao ◽  
...  

Sepsis-induced myocardial dysfunction is a major contributor to the poor outcomes of septic shock. As an add-on with conventional sepsis management for over 15 years, the effect of Xuebijing injection (XBJ) on the sepsis-induced myocardial dysfunction was not well understood. The material basis of Xuebijing injection (XBJ) in managing infections and infection-related complications remains to be defined. A murine cecal ligation and puncture (CLP) model and cardiomyocytes in vitro culture were adopted to study the influence of XBJ on infection-induced cardiac dysfunction. XBJ significantly improved the survival of septic-mice and rescued cardiac dysfunction in vivo. RNA-seq revealed XBJ attenuated the expression of proinflammatory cytokines and related signalings in the heart which was further confirmed on the mRNA and protein levels. Xuebijing also protected cardiomyocytes from LPS-induced mitochondrial calcium ion overload and reduced the LPS-induced ROS production in cardiomyocytes. The therapeutic effect of XBJ was mediated by the combination of paeoniflorin and hydroxysafflor yellow A (HSYA) (C0127-2). C0127-2 improved the survival of septic mice, protected their cardiac function and cardiomyocytes while balancing gene expression in cytokine-storm-related signalings, such as TNF-α and NF-κB. In summary, Paeoniflorin and HSYA are key active compounds in XBJ for managing sepsis, protecting cardiac function, and controlling inflammation in the cardiac tissue partially by limiting the production of IL-6, IL-1β, and CXCL2.


Sign in / Sign up

Export Citation Format

Share Document