scholarly journals Characterization of human fetal brain endothelial cells reveals barrier properties suitable for in vitro modeling of the BBB with syngenic co-cultures

2017 ◽  
Vol 38 (5) ◽  
pp. 888-903 ◽  
Author(s):  
Allison M Andrews ◽  
Evan M Lutton ◽  
Lee A Cannella ◽  
Nancy Reichenbach ◽  
Roshanak Razmpour ◽  
...  

Endothelial cells (ECs) form the basis of the blood–brain barrier (BBB), a physical barrier that selectively restricts transport into the brain. In vitro models can provide significant insight into BBB physiology, mechanisms of human disease pathology, toxicology, and drug delivery. Given the limited availability of primary human adult brain microvascular ECs ( aBMVECs), human fetal tissue offers a plausible alternative source for multiple donors and the opportunity to build syngenic tri-cultures from the same host. Previous efforts to culture fetal brain microvascular ECs ( fBMVECs) have not been successful in establishing mature barrier properties. Using optimal gestational age for isolation and flow cytometry cell sorting, we show for the first time that fBMVECs demonstrate mature barrier properties. fBMVECs exhibited similar functional phenotypes when compared to aBMVECs for barrier integrity, endothelial activation, and gene/protein expression of tight junction proteins and transporters. Importantly, we show that tissue used to culture fBMVECs can also be used to generate a syngenic co-culture, creating a microfluidic BBB on a chip. The findings presented provide a means to overcome previous challenges that limited successful barrier formation by fBMVECs. Furthermore, the source is advantageous for autologous reconstitution of the neurovascular unit for next generation in vitro BBB modeling.

2021 ◽  
Vol 22 (11) ◽  
pp. 6122
Author(s):  
Mihály Kozma ◽  
Ádám Mészáros ◽  
Ádám Nyúl-Tóth ◽  
Kinga Molnár ◽  
Laura Costea ◽  
...  

By upregulation of cell adhesion molecules and secretion of proinflammatory cytokines, cells of the neurovascular unit, including pericytes and endothelial cells, actively participate in neuroinflammatory reactions. As previously shown, both cell types can activate inflammasomes, cerebral endothelial cells (CECs) through the canonical pathway, while pericytes only through the noncanonical pathway. Using complex in vitro models, we demonstrate here that the noncanonical inflammasome pathway can be induced in CECs as well, leading to a further increase in the secretion of active interleukin-1β over that observed in response to activation of the canonical pathway. In parallel, a more pronounced disruption of tight junctions takes place. We also show that CECs respond to inflammatory stimuli coming from both the apical/blood and the basolateral/brain directions. As a result, CECs can detect factors secreted by pericytes in which the noncanonical inflammasome pathway is activated and respond with inflammatory activation and impairment of the barrier properties. In addition, upon sensing inflammatory signals, CECs release inflammatory factors toward both the blood and the brain sides. Consequently, CECs activate pericytes by upregulating their expression of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome-forming pattern recognition receptor. In conclusion, cerebral pericytes and endothelial cells mutually activate each other in inflammation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 240-240
Author(s):  
Yongzhi Qiu ◽  
Byungwook Ahn ◽  
Yumiko Sakurai ◽  
Caroline Hansen ◽  
Clinton H. Joiner ◽  
...  

Abstract Background: Endothelial activation and dysfunction play critical roles in vaso-occlusive crises and vasculopathy in sickle cell disease (SCD). However, it remains unclear how the myriad of cellular and biomolecular interactions that occur in SCD directly affect endothelial cell activation and injury, due largely in part to the lack of robust in vitro models for studying these complex biophysical processes. To this end, we engineered the first perfusable hydrogel-based microfluidic device comprised of "endothelialized" channels at the microvascular sizescale. Unlike typical microfluidic devices, which are silicone(PDMS)-based, this device is comprised of a collagen-based hydrogel that is not only more physiologic but also enables real-time monitoring of the endothelium permeability while allowing the user to tightly control hemodynamic conditions and the cellular and molecular components of the perfusate. Interestingly, in this system, upon removal of injurious stimuli, the endothelial cells are able to "self-heal" after injury and fully establish their barrier function. Using this system, we first tested whether interaction of SCD patient RBCs with endothelium under flow can directly cause endothelial permeability. We then studied how shear stress promotes endothelial cell activation and injury caused by free hemin, a byproduct of hemolysis in SCD. Results and Discussions: After seeding into the hydrogel-based device, human endothelial cells formed a monolayer that covered the entire inner surface of the microchannels and can be maintained for >1 month under flow conditions. Establishing that cultured endothelial cells are functional in this system, the cells appropriately formed continuous adherens junctions under flow as indicated by VE-cadherin staining (Figure 1A) and also deposited their own subendothelial extracellular matrices, including collagen IV (Figure 1B) and laminin (Figure 1C). Finally, perfusion of fluorescently-tagged albumin (BSA) sufficient endothelial barrier function of our system as all fluorescence signal was contained within the "vascular" space (Figure 1D and 1E). RBCs isolated from SCD patients were perfused into the endothelialized channels for 4 hours. Strikingly, the direct interaction of the perfused SCD RBCs with the engineered endothelium, in and of itself, was sufficient to induce endothelial permeability (Figure 2A), a phenomenon that did not occur with perfusion of control RBCs isolated from healthy volunteers. Interestingly, impermeability was reestablished as the endothelium "healed" 1 day post-interaction with patient RBCs (Figure 2B). We then perfused hemin in the channels under two different flow rates and the flow velocity profile, wall shear stress, shear rate, and pressure were characterized using COMSOL (Figure 3A and 3B). Interestingly, 1 hour of hemin exposure (10 µM) at higher shear stress compared to lower shear stress not only caused increased endothelial permeability and loss of endothelial cells at 1 day post-treatment, but also dampened the "healing" of injured endothelial cells and reestablishment of impermeability after removal of hemin from the system (Figure 3C and D). Conclusions and on-going work: Our physiologic hydrogel-based microvasculature-on-a-chip system enables investigation of how cell/molecular interactions directly affect endothelial permeability in real time and represents a milestone in the use of microfluidic devices for SCD research. In addition, the "self-healing" capability mimics the in vivo microvasculature and is a unique capability of this system as compared to current in vitro models. With this novel system, we determined that RBC-endothelial interactions under physiologic flow are sufficient to induce endothelial barrier dysfunction. We also demonstrated the additive role of hemodynamics in promoting hemin-induced endothelial activation and dysfunction. Ongoing work investigating the mechanisms of our observations will unveil insight into SCD pathogenesis and our system can be applied to other vascular diseases as well. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Marc Schwab ◽  
Ignazio de Trizio ◽  
Jau-Ye Shiu ◽  
Moheb Ghobrial ◽  
Oguzkan Sürücü ◽  
...  

ABSTRACTGlioblastoma (GBM) is amongst the deadliest human cancers and is characterized by high levels of vascularisation. Angiogenesis is highly dynamic during brain development and almost quiescent in the adult brain, but is reactivated in vascular-dependent CNS pathologies such as brain tumors. Nucleolin (NCL) is a known regulator of cell proliferation and angiogenesis, but its roles on physiological and pathological brain vasculature remain unknown. Here, we studied the expression of Nucleolin in the neurovascular unit (NVU) in human fetal brains and human gliomas in vivo as well as its effects on sprouting angiogenesis and endothelial metabolism in vitro. Nucleolin is highly expressed in endothelial- and perivascular cells during brain development, downregulated in the adult brain, and upregulated in glioma. Moreover, Nucleolin expression in tumor- and blood vessel cells correlated with glioma malignancy in vivo. In culture, siRNA-mediated NCL knockdown reduced human umbilical vein endothelial cell (HUVEC) sprouting angiogenesis, proliferation and filopodia extension, and reduced glucose metabolism. Mechanistically, RNA sequencing of Nucleolin knockdown in HUVECs revealed a putative p53-TIGAR-HK2 regulation of endothelial glycolysis. These findings identify Nucleolin as a neurodevelopmental factor reactivated in glioma that positively regulates sprouting angiogenesis and endothelial metabolism. Our findings have important implications in therapeutic targeting of glioma.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1182
Author(s):  
Luca Possenti ◽  
Laura Mecchi ◽  
Andrea Rossoni ◽  
Veronica Sangalli ◽  
Simone Bersini ◽  
...  

Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment’s homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ning Zhou ◽  
Lei Wang ◽  
Ping Fu ◽  
Zihao Cui ◽  
Yuhang Ge ◽  
...  

Abstract Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model.


2021 ◽  
Vol 22 (6) ◽  
pp. 2891
Author(s):  
Sonia Balestri ◽  
Alice Del Giovane ◽  
Carola Sposato ◽  
Marta Ferrarelli ◽  
Antonella Ragnini-Wilson

The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.


Biomédica ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 119 ◽  
Author(s):  
Óscar Ortega ◽  
Alejandro Ondo-Méndez ◽  
Ruth Garzón

Introducción. El microambiente tumoral influye en el comportamiento de las células cancerosas. Especialmente, el estímulo de agentes estresantes, como la hipoxia, se convierte en un factor crítico para la evolución y el tratamiento del cáncer. La reacción celular frente a diversos estímulos se manifiesta en la activación de vías de señalización como la JAK/STAT, una de las más importantes por sus efectos en la diferenciación y proliferación celular.Objetivo. Evaluar el estado de la vía JAK/STAT mediante la expresión o activación de la proteína STAT3 en células de cáncer de cuello uterino (HeLa) y en células endoteliales (EA.hy926) sometidas a hipoxia.Materiales y métodos. Las líneas celulares se sometieron a condiciones de hipoxia física (1 % de O2) o química (100 μM de deferoxamina, DFO) durante dos, seis y 24 horas. Mediante Western blot se determinó el cambio en la expresión y activación de STAT3, y mediante inmunofluorescencia indirecta, su localización subcelular.Resultados. La hipoxia se evidenció por la activación y translocación al núcleo del HIF-1. Ni la hipoxia física ni la química alteraron la expresión de STAT3, pero sí la activación, según se comprobó por su fosforilación y su translocación al núcleo en los dos modelos bajo estudio.Conclusiones. Se evidenció la importancia de la hipoxia como un estímulo que modifica la activación de la proteína STAT3 en las células HeLa y EA.hy926, lo cual la convierte en un elemento importante en el diseño de estrategias terapéuticas contra el cáncer.


2020 ◽  
pp. neurintsurg-2020-016859
Author(s):  
Alyssa McCulloch ◽  
Ashley Turcott ◽  
Gabriella Graham ◽  
Sergey Frenklakh ◽  
Kristen O'Halloran Cardinal

ObjectiveThe goal of this work was to endothelialize silicone aneurysm tubes for use as in vitro models for evaluating endothelial cell interactions with neurovascular devices. The first objective was to establish consistent and confluent endothelial cell linings and to evaluate the silicone vessels over time. The second objective was to use these silicone vessels for flow diverter implantation and assessment.MethodsSilicone aneurysm tubes were coated with fibronectin and placed into individual bioreactor systems. Human umbilical vein endothelial cells were deposited within tubes to create silicone vessels, then cultivated on a peristaltic pump and harvested at 2, 5, 7, or 10 days to evaluate the endothelial cell lining. A subset of silicone aneurysm vessels was used for flow diverter implantation, and evaluated for cell coverage over device struts at 3 or 7 days after deployment.ResultsSilicone vessels maintained confluent, PECAM-1 (platelet endothelial cell adhesion molecule 1) positive endothelial cell linings over time. These vessels facilitated and withstood flow diverter implantation, with robust cell linings disclosed after device deployment. Additionally, the endothelial cells responded to implanted devices through coverage of the flow diverter struts with increased cell coverage over the aneurysm seen at 7 days after deployment as compared with 3 days.ConclusionsSilicone aneurysm models can be endothelialized and successfully maintained in vitro over time. Furthermore, these silicone vessels can be used for flow diverter implantation and assessment.


Sign in / Sign up

Export Citation Format

Share Document