scholarly journals Mevastatin in colon cancer by spectroscopic and microscopic methods - Raman imaging and AFM studies

2021 ◽  
Author(s):  
Karolina Beton ◽  
Piotr Wysocki ◽  
Beata Brozek-Pluska

One of the most important areas of medical science is oncology, which is responsible for both the diagnostics and treatment of cancer diseases. Simultaneously one of the main challenges of oncology is the development of modern drugs effective in the fight against cancer. Statins are a group of biologically active compounds with the activity of 3-hydroxy-3-methyl glutaryl-CoA reductase inhibitors, an enzyme catalyzing the reduction of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) to mevalonic acid. By acting on this enzyme, statins inhibit the endogenous cholesterol synthesis which in turn causes the reduction of its systemic concentrations. However, in vitro and in vivo studies confirm also the cytostatic and cytotoxic effects of statins against various types of cancer cells including colon cancer. In the presented studies the influence of mevastatin on cancerous colon cells CaCo-2 by Raman spectroscopy and imaging is discussed and compared with biochemistry characteristic for normal colon cells CCD-18Co. Based on vibrational features of colon cells: normal cells CCD-18Co, cancerous cells CaCo-2 and cancerous cells CaCo-2 treated by mevastatin in different concentrations and incubation times we have confirm the influence of this statin on biochemistry composition of cancerous human colon cells. Moreover, the spectroscopic results for colon normal cells and cancerous cells based on data typical for nucleic acids, proteins, lipids have been compared. The cytotoxisity of mevastatin was determined by using XTT tests.

2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Author(s):  
Maryam Muhammad Mailafiya ◽  
Mohamad Aris Mohd Moklas ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
...  

Background: Cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NP) are natural biogenic inorganic material that is used in drug delivery mainly as a bone-remodeling agent as well as a delivery agent for various therapeutics against bone diseases. Curcumin possess wide safety margin and yet puzzled with the problem of poor bioavailability due to insolubility. Propounding in vitro and in vivo studies on toxicity assessments of newly synthesized nanoparticles are ongoing to overcome some crucial challenges regarding their safety administration. Nanotoxicology has paved ways for concise test protocols to monitor sequential events with regards to possible toxicity of newly synthesized nanomaterials. The development of nanoparticle with no or less toxic effect has gained tremendous attentions. Objective: This study aimed at evaluating the in vitro cytotoxic effect of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) and assessing its biocompatibility on normal cells using standard techniques of WST’s assay. Method: Standard techniques of WST’s assay was used for the evaluation of the biocompatibility and cytotoxicity. Result: The result showed that CSCaCO3NP and Cur-CSCaCO3NP possess minimal toxicity and high biocompatibility on normal cells even at higher dose of 500 µg/ml and 40 µg/ml respectively. Conclusion: CSCaCO3NP can be termed an excellent non-toxic nanocarrier for curcumin delivery. Hence, curcumin loaded cockle shell derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) could further be assessed for various in vivo and in vitro therapeutic applications against various bone related ailments.


2010 ◽  
Vol 45 (9) ◽  
pp. 3702-3708 ◽  
Author(s):  
Shiby Paul ◽  
Cassia S. Mizuno ◽  
Hong Jin Lee ◽  
Xi Zheng ◽  
Sarah Chajkowisk ◽  
...  

2021 ◽  
Author(s):  
JUNDONG WANG ◽  
TIANHAO LI ◽  
CHAOCHI YUE ◽  
SEN ZHONG ◽  
XIANGDONG YANG ◽  
...  

Abstract BackgroundThe problems associated with poor water solubility of anticancer drugs are one of the most important challenges in achieving effective cancer therapy. The present study was designed to evaluate the effect of Scutellarein on human colon cancer cells in vitro by using a target αvβ-3 novel Scutellarein (Scu)-loaded niosome nanoparticle (β-CD-CL-Scu-cRGD).Resultsβ-CD-CL-Scu-cRGD has a diameter of 140.2nm and a zeta potential of -11.3 mV with a constant physicochemical stability. The MTT assay showed both Scu and β-CD-CL-Scu-cRGD caused a decrease in cell proliferation and viability of HT29, but β-CD-CL-Scu-cRGD showed better activity in vitro. Colony formation assay and flow cytometry assay showed that β-CD-CL-Scu-cRGD has a better effect on cell proliferation and apoptosis.ConclusionsAlthough further in vivo studies are necessary, our results suggested that β-CD-CL-Scu-cRGD could be an outstanding carrier to deliver Scu for potential therapeutic approaches into colon cancer.


Author(s):  
Samira Makanjuola ◽  
Olajuwon Okubena ◽  
Louis Ajonuma ◽  
Adedoyin Dosunmu ◽  
Solomon Umukoro ◽  
...  

The West-African variety of Sorghum bicolor leaf sheath (SBLS) Jobelyn® is a natural remedy, which has gained international recognition for its anti-anemic effect and energy boosting qualities in debilitating diseases. The widespread use of traditional medicine in the region usually confirms its safety, but not its efficacy or deep assessment of their pharmacological properties. The other major issue for herbal-based treatments is the lack of definite and complete information about the composition of the extracts.  Despite limitations, efforts have been made in isolation and characterisation of active compounds in this specie of sorghum showing various subclasses of flavonoids including apigeninidin, a stable 3-deoxyanthocyanidin and potential fungal growth inhibitor, which accounts for 84% of the total extract. Non-clinical in vitro and in vivo studies support previous indications that this variety of Sorghum bicolor possesses several biologically active compounds with potent antioxidant, anti-inflammatory, anti-aging and neuro-protective properties.  Clinical studies show that SBLS has the ability to boost hemoglobin concentrations in anemic conditions and most remarkably to increase CD4 count in HIV-positive patients. The multiple effects and high safety profiles of this extract may encourage its development as a therapeutic agent for the treatment of anemia, chronic inflammatory conditions or in the symptomatic management of HIV infections. This review describes the potential therapeutic aspects of SBLS extract and its potential benefits.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1573-1580
Author(s):  
Savita Belwal ◽  
Sujana Kariveda ◽  
Saritha Ramagiri ◽  
Swathi A ◽  
Shubham Kute ◽  
...  

The green biological route has been employed to convert macro-sized zinc and copper metal complexes into nano-sized metal complexes. These bioactive metal complexes were synthesized by template condensation process in the chemistry laboratory. The newly synthesized biologically active complexes were converted into nano range from phytochemical aqueous extract of Macrotyloma uniflorum (horse gram). Biologically converted nano complexes have been characterized by physicochemical as well as spectroscopic techniques such as UV-visible spectrophotometer and FTIR. The reduced Cu and Zn metal nanoparticles were analyzed with SEM for shape and size, which showed most of the nanoparticles, were nearly spherical with nano range size. To estimate the potentiality of newly manufactured copper and zinc nanoparticles in vitro  and in in vivo  studies, i.e. antifungal and antibacterial and anti-cancer activities were performed. The biogenic nanoparticles of Cu and Zn were evaluated for their activity on cancer A-549 cell lines by standard MTT assay for metabolically active mitochondria and cell viability. Further flow cytometric studies showed Cu, and Zn nano complexes had inhibition efficacy of cancer cells compared to normal cells. This study elevates that biosynthesized Cu & Zn nano complexes can be an alternative for the treatment of cancer.


2021 ◽  
pp. 47-54
Author(s):  
Yamini Bhatt ◽  
Hemlata Pandey

Oats are known to be a healthy food for the heart mainly due to their high β-glucan content. Besides, they contain more than 20 unique polyphenols, avenanthramides, which have shown strong antioxidant activity in vitro and in vivo. The polyphenols of oats have also recently been shown to exhibit anti-inflammatory, anti-proliferative, and anti-itching activity, which may provide additional protection against coronary heart disease, colon cancer, and skin irritation. Oats have been labelled as a functional food as they contain β-glucan, minerals, and antioxidants. Owing to their high nutritional value, oat-based food products like bread, biscuits, cookies, probiotic drinks, breakfast cereals, flakes, and infant food are gaining increasing consideration.


2021 ◽  
Author(s):  
Yi Li ◽  
Chunli Zhang ◽  
Xiaohan Ma ◽  
Liuqing Yang ◽  
Huijun Ren

Abstract Radix Puerariae (RP), a dry root of the Pueraria lobata (Willd.) Ohwi, is used to treat a variety of diseases, including cancer. Several in vitro and in vivo studies have demonstrated the efficacy of RP in the treatment of colon cancer (CC). However, the biological mechanism of RP in the treatment of colon cancer remains unclear. In this study, the active component of RP and its potential molecular mechanism against CC were studied by network pharmacology and enrichment analysis. The methods adopted included screening of active ingredients of Chinese medicine, prediction of target genes of Chinese medicine and disease, construction of protein interaction network, and GO and KEGG Enrichment Analysis. Finally, the results of network pharmacology were further validated by molecular docking experiments and cell experiments. 8 active constituents and 14 potential protein targets were screened from RP, including EGFR, JAK2 and SRC. The biological mechanism of RP against CC was analyzed by studying the relationship between active components, targets, and enrichment pathway. This provides a basis for understanding the clinical application of RP in CC.


2020 ◽  
Vol 26 (14) ◽  
pp. 1622-1633
Author(s):  
Alaa Mahmoud ◽  
Dana Elkhalifa ◽  
Feras Alali ◽  
Ala-Eddin Al Moustafa ◽  
Ashraf Khalil

Background/Objective: KRAS-mutant colorectal cancers (CRC) are tumors that are associated with poor prognosis. However, no effective treatments are available to target them. Therefore, we designed and synthesized novel chalcone analogs, small organic molecules, to investigate their effects on KRAS-mutant CRC cells. Methods: Fourteen new chalcone analogs were synthesized, optimized, characterized, and tested against two KRAS-mutant CRC cell lines (HCT-116 and LoVo), one p-53 and BRAF mutant CRC cell line (HT-29) and one normal immortalized colon cells (NCE-1 E6/E7). Effects on cell viability, apoptosis, cell cycle, migration, colony formation, EMT, and angiogenesis were investigated. Results: Compounds 3 and 14 were the most effective. Compound 3 showed potent activity against HCT-116 and LoVo cell lines (GI50 of 6.10 μM and 7.00 μM, respectively). While compound 14 showed GI50 of 8.60 μM and 8.80 μM on HCT-116 and LoVo cell lines, respectively. Both compounds were approximately 2-3 times more selective toward cancer cells rather than normal colon cells. Compound 3 was effective in inducing apoptosis in HCT-116 cells via Bax upregulation and Bcl-2 downregulation. Invasion and metastasis of KRAS-mutant cells were modulated by compounds 3 and 14 through significant inhibition of cell migration and the prevention of colony formation. In addition, they reversed EMT by downregulation of EMT markers (vimentin, fascin, and β- catenin) and upregulation of cell-cell adhesion marker, E-cadherin. Furthermore, compounds 3 and 14 had significantly inhibited angiogenesis in ovo. Conclusion: Compounds 3 and 14 represent potent and selective leads for KRAS-mutant CRC cells, thus, further in vitro and in vivo studies are necessary to confirm their effect on KRAS-mutant CRCs.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e14153-e14153
Author(s):  
Edward H. Lin ◽  
Yu Xiazhen ◽  
Xi C He ◽  
Xifeng Wu ◽  
Yang Xie ◽  
...  

e14153 Background: The median survival for patients with unresectable metastatic colorectal cancer (CRC) is ~2 years with modern chemotherapy which yields only 5-10% complete responses (CR) including metastasectomy. Recurrences after CR are very common thanks to presence of dormant CSC that are best targeted by our proposed two-step ADAPT strategy: activate from dormancy and potentiate targeting. We examine this strategy in various CRC models and reviewed the impact on stemess including CD133 mRNA, a circulating CSC marker that predict colon cancer relapse. Methods: Different CRC models (in vitro and in vivo) were interrogated similar to clinical ADAPT treatment protocol using capecitabine (or 5FU) plus celecoxib. We also conducted IRB approved retrospective review of unresectable metastatic CRC patients treated ADAPT therapy and in those who also had PBMC CD133 mRNA measured. Results: Contrary to 5FU, which eliminates proliferating CRC cells via apoptosis but also stimulates stemness, celecoxib preferentially deplete CD133+ colon cells and exert potent stemness inhibition via rapid tumor necrosis by perturbing hypoxia and energy metabolism via CA-IX. Following response to first-line chemotherapy, ADAPT strategy plus radiation improved CR or near CR rate to 49/126 (40%) in unresectable CRC patients whose median survival had reached 92.7 months (95% CI, 53.5 months - not reached). Paradoxically, none surgical CR patients (n= 16) enjoyed 100% 5-year relapse free survival compared to 42% of surgical patients (p = 0.04). The PBMC CD133 mRNA in five long-term CR patients were 0.0024, 0.29, 0.5, 0.56, 2.96 respectively, all below previously reported cutoff value of 4.79 for recurrence and far below CD133 mRNA levels (28, 375, 3997, 15662, 83240) in none CR patients. Conclusions: ADAPT plus radiation preferentially targets colon CSC via hypoxia/CA-IX and improves clinical CR rate and molecular CR as measured by PBMC CD133 mRNA. We are actively interrogating the effects of ADAPT strategies in a phase II study funded by Gateway in CRC patients and in genetic CRC animal models.


Sign in / Sign up

Export Citation Format

Share Document