scholarly journals Acropetal and basipetal cardenolide transport in Erysimum cheiranthoides (wormseed wallflower)

2021 ◽  
Author(s):  
Martin L. Alani ◽  
Gordon C. Younkin ◽  
Mahdieh Mirzaei ◽  
Pavan Kumar ◽  
Georg Jander

AbstractPlant specialized metabolites are often subject to within-plant transport and have tissue-specific distribution patterns. Among plants in the Brassicaceae, the genus Erysimum is unique in producing not only glucosinolates but also cardenolides as defense against insect herbivory. Ten cardenolides were detected with varying abundance in different tissues of Erysimum cheiranthoides (wormseed wallflower). As is predicted by the optimal defense theory, cardenolides were most abundant in young leaves and reproductive tissues. The lowest concentrations were observed in senescing leaves and roots. Crosses between wildtype E. cheiranthoides and a mutant line with an altered cardenolide profile showed that the seed cardenolide phenotype is determined entirely by the maternal genotype. Prior to the development of the first true leaves, seedling cotyledons also had the maternal cardenolide profile. Hypocotyl grafting experiments showed that the root cardenolide profile is determined entirely by the aboveground plant genotype. In further grafting experiments, there was no evidence of cardenolide transport into the leaves, but a mixed cardenolide profile was observed in the stems and inflorescences of plants that had been grafted at vegetative and flowering growth stages, respectively. Together, these results indicate that E. cheiranthoides leaves are a site of cardenolide biosynthesis and therefore also the plant tissue that is most likely to be expressing the relevant biosynthetic genes.

2021 ◽  
Author(s):  
Pascal Hunziker ◽  
Sophie Konstanze Lambertz ◽  
Konrad Weber ◽  
Christoph Crocoll ◽  
Barbara Ann Halkier ◽  
...  

Numerous plants protect themselves from attackers using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence merely relies on the correlation between plant metabolite distribution and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on actual feeding behavior. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


2021 ◽  
Vol 118 (47) ◽  
pp. e2111977118
Author(s):  
Pascal Hunziker ◽  
Sophie Konstanze Lambertz ◽  
Konrad Weber ◽  
Christoph Crocoll ◽  
Barbara Ann Halkier ◽  
...  

Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Author(s):  
Peeter Päll

The article looks at the geographical distribution of toponymic endings with the aim of discovering significant patterns. The corpus includes ca. 9,000 oikonyms, of which 24% are those that have the analysed endings. Endings are recognized if names have at least 3 syllables or have 2 syllables and the Q3 degree of quantity; in these cases the existence of a toponymic suffix is most likely. In the case of endings that have multiple origins there are seemingly no specific distribution patterns, with the exception of some borrowed endings (e.g. -na or -va). In the case of typical toponymic suffixes -la, -ste and -vere each of these are often concentrated into certain areas based on which the whole are of Estonia might be divided into regions: -vere-region (northern Tartumaa and northern Viljandimaa), -ste-region (Võrumaa, southern Tartumaa, southern Viljandimaa and southern Pärnumaa), -la-region (Virumaa, Järvamaa, Harjumaa) and a mixed region (Läänemaa, northern Pärnumaa). The island of Saaremaa is dominated by -la-endings, Hiiumaa is either a mixed region or a -ste-region


2021 ◽  
Author(s):  
Dandan Zhao ◽  
Tadiyose Girma Bekele ◽  
Hongxia Zhao

Abstract Benzotriazole ultraviolet stabilizers (BUVSs) have received increasing attention due to their widespread usage, ubiquitous detection and their adverse ecological effect. However, information about the bioaccumulation potential of BUVSs and their joint exposure with heavy metals remains scarce. In this study, we investigated the bioaccumulation kinetics of 6 frequently reported BUVSs in common carp under different Cu concentration for 48 d, and their tissue-specific distribution patterns (liver, kidney, gill, and muscle tissues) were also evaluated. The bioconcentration factors (BCFs) and half-lives (t1/2) in the tissues ranged from 5.73 (UV-PS) to 1076 (UV-327), and 2.19 (UV-PS) to 31.5 (UV-320) days, respectively. The tissue-specific concentration and BCF values followed the order of liver > kidney > gill > muscle with or without Cu exposure. An increase in BCF with rising Cu concentration was observed, which is caused by the decreased depuration rate (k2) in more than half of treatment groups. These results indicated that BUVSs accumulated in fish and provides important insight into the risk assessment of this group of chemicals.


Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


The Auk ◽  
2002 ◽  
Vol 119 (1) ◽  
pp. 166-174 ◽  
Author(s):  
J. Scott Fretz

Abstract The Hawaii Akepa (Loxops coccineus coccineus) is an endangered bird that has declined dramatically in the last 100 years, and is now rare or absent from many areas that appear to support suitable habitat. Food availability may play a role in these distribution patterns, but differences in food between sites may arise from different sources. I compared prey availability between a site supporting a large, stable Hawaii Akepa population, and a site from which Hawaii Akepa have declined in the last 100 years for unknown reasons. I used three spatial scales to compare food between sites to explore the basis of differences in food between sites. At a scale appropriate for comparing prey population dynamics (scale 1), I found that prey population densities are similar between sites, suggesting that introduced (or native) predators or parasitoids have not affected prey populations differently between sites. At two larger scales incorporating habitat structure, I found that food availability is much lower at the site of Hawaii Akepa declines. Differences in canopy density per square meter (scale 2), and in canopy cover per square kilometer (scale 3), result in lower food availability that may have effects on individual foraging birds as well as on potential Hawaii Akepa population density. These findings illustrate the importance of explicitly incorporating spatial scale into inquiries about food for Hawaii Akepa, and suggest that the site of population declines may not be suitable habitat with respect to food for this species.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 680
Author(s):  
Jian-Xia Wang ◽  
Jing Liu ◽  
Yun-Heng Miao ◽  
Da-Wei Huang ◽  
Jin-Hua Xiao

Mitochondrial DNA sequences can be transferred into the nuclear genome, giving rise to nuclear mitochondrial DNA sequences (NUMTs). NUMTs have been described in numerous eukaryotes. However, the studies on the distribution of NUMTs and its influencing factors are still inadequate and even controversial. Previous studies have suggested that Hymenoptera may be a group rich in NUMTs, in which we selected 11 species of fig wasps (Chalcidoidea, Hymenoptera) to analyze the distribution and evolution of NUMTs at the genomic level. The results showed that the contents of NUMTs varied greatly in these species, and bursts of NUMTs existed in some species or lineages. Further detailed analyses showed that the large number of NUMTs might be related to the large genomes; NUMTs tended to be inserted into unstable regions of the genomes; and the inserted NUMTs might also be affected by transposable elements (TEs) in the neighbors, leading to fragmentations and duplications, followed by bursts of NUMTs. In summary, our results suggest that a variety of genomic environmental factors can determine the insertion and post-insertion fate of NUMTs, resulting in their species- or lineage-specific distribution patterns, and that studying the evolution of NUMTs can provide good evidence and theoretical basis for exploring the dynamics of exogenous DNA entering into the nuclear genome.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 70 ◽  
Author(s):  
Alice Gadea ◽  
Mathieu Fanuel ◽  
Anne-Cécile Le Lamer ◽  
Joël Boustie ◽  
Hélène Rogniaux ◽  
...  

Lichens are slow-growing organisms supposed to synthetize specialized metabolites to protect themselves against diverse grazers. As predicted by the optimal defense theory (ODT), lichens are expected to invest specialized metabolites in higher levels in reproductive tissues compared to thallus. We investigated whether Laser Desorption Ionization coupled to Mass Spectrometry Imaging (LDI-MSI) could be a relevant tool for chemical ecology issues such as ODT. In the present study, this method was applied to cross-sections of thalli and reproductive tissues of the lichen Pseudocyphellaria crocata. Spatial mapping revealed phenolic families of metabolites. A quantification of these metabolites was carried out in addition to spatial imaging. By this method, accumulation of specialized metabolites was observed in both reproductive parts (apothecia and soralia) of P. crocata, but their nature depended on the lichen organs: apothecia concentrated norstictic acid, tenuiorin, and pulvinic acid derivatives, whereas soralia mainly contained tenuiorin and pulvinic acid. Stictic acid, tenuiorin and calycin, tested in no-choices feeding experiments, were deterrent for N. hookeri while entire thalli were consumed by the snail. To improve better knowledge in relationships between grazed and grazing organisms, LDI-MSI appears to be a complementary tool in ecological studies


Sign in / Sign up

Export Citation Format

Share Document