scholarly journals Interferon-gamma Induces Melanogenesis Via Post-Translational Modification of Tyrosinase

2021 ◽  
Author(s):  
Xuan Mo ◽  
Hasan Raza Kazmi ◽  
Sarah Preston-Alp ◽  
Bo Zhou ◽  
M. Raza Zaidi

Melanogenesis (melanin pigment production) in melanocytes is canonically stimulated by the alpha-melanocyte stimulating hormone (αMSH), which activates the cyclic-AMP-mediated expression of the melanocyte inducing transcription factor (MITF) and its downstream melanogenic genes, including the principal rate-limiting melanogenic enzyme tyrosinase (Tyr). Here we report that interferon-gamma (IFNG; type II interferon), but not IFN-alpha (a type I interferon), induces a noncanonical melanogenic pathway. Inhibition of IFNG pathway by the JAK inhibitor ruxolitinib or knocking out Stat1 abrogated the IFNG-induced melanogenesis. Interestingly, IFNG-induced melanogenesis was independent of MITF. IFNG markedly increased the Tyr protein expression but did not affect the mRNA expression, suggesting a post-translational regulatory mechanism. In contrast, IFNG had no effect on the expression of other melanogenesis-related proteins, e.g. tyrosinase-related protein 1 (Tyrp1) and dopachrome tautomerase (Dct). Glycosidase digestion assays revealed that IFNG treatment increased the mature glycosylated form of Tyr, but not its de novo synthesis. Moreover, cycloheximide chase assay showed that degradation of Tyr was decreased in IFNG-treated cells. These results suggest that the IFNG-STAT1 pathway regulates melanogenesis via modulation of the post-translational processing and protein stability of Tyr.

2001 ◽  
Vol 29 (6) ◽  
pp. 831-835 ◽  
Author(s):  
S. C. Linn ◽  
H. S. Kim ◽  
E. M. Keane ◽  
L. M. Andras ◽  
E. Wang ◽  
...  

Complex sphingolipids are ‘built’ on highly bio-active backbones (sphingoid bases and ceramides) that can cause cell death when the amounts are elevated by turnover of complex sphingolipids, disruption of normal sphingolipid metabolism, or over-induction of sphingolipid biosynthesis de novo. Under normal conditions, it appears that the bioactive intermediates of this pathway (3-keto-sphinganine, sphinganine and ceramides) are kept at relatively low levels. Both the intrinsic activity of serine palmitoyltransferase (SPT) and the availability of its substrates (especially palmitoyl-CoA) can have toxic consequences for cells by increasing the production of cytotoxic intermediates. Recent work has also revealed that diverse agonists and stresses (cytokines, UV light, glucocorticoids, heat shock and toxic compounds) modulate SPT activity by induction of SPTLC2 gene transcription and/or post-translational modification. Mutation of the SPTLC1 component of SPT has also been shown to cause hereditary sensory neuropathy type I, possibly via aberrant oversynthesis of sphingolipids. Another key step of the pathway is the acylation of sphinganine (and sphingosine in the recycling pathway) by ceramide synthase, and up-regulation of this enzyme (or its inhibition to cause accumulation of sphinganine) can also be toxic for cells. Since it appears that most, if not all, tissues synthesize sphingolipids de novo, it may not be surprising that disruption of this pathway has been implicated in a wide spectrum of disease.


1995 ◽  
Vol 108 (6) ◽  
pp. 2301-2309 ◽  
Author(s):  
T. Kobayashi ◽  
W.D. Vieira ◽  
B. Potterf ◽  
C. Sakai ◽  
G. Imokawa ◽  
...  

Mammalian melanocytes can produce two basic types of melanin, eumelanin and pheomelanin, within discrete organelles termed melanosomes. The physiological signals that regulate this switch are extrinsic to the melanocyte, and include alpha-melanocyte stimulating hormone and the agouti protein. Tyrosinase, encoded at the albino locus, is the enzyme essential for the synthesis of both types of melanin, but other tyrosinase-related proteins (e.g. TRP1 encoded at the brown locus and TRP2 encoded at the slaty locus) regulate eumelanogenesis catalytically at steps distal to tyrosinase (as 5,6-dihydroxyindole-2-carboxylic acid oxidase and DOPAchrome tautomerase, respectively). The silver protein is another melanosomal protein, and although it has some limited homology to the tyrosinase-related proteins, it does not have any known enzymatic function and probably serves as a structural matrix protein. The role of each of those melanosomal proteins in pheomelanogenesis, however, is still unclear. In this study, we have compared the expression and catalytic functions of those proteins in pheomelanic and eumelanic hair bulb melanocytes. There was no detectable expression of TRP1 or TRP2, or either of their enzymatic activities, in hair bulbs of lethal yellow (Ay/a) newborn mice, and tyrosinase activity was present at a reduced level compared to that found in hair bulbs of black (a/a) newborn mice. Similar results were observed in regenerating hair bulbs of adult lethal yellow mice and in hair bulbs of 5- to 7-day-old agouti mice (A/A), an age where pheomelanin is produced predominantly. Expression of the silver protein was similarly not observed in hair bulbs of the pheomelanic mice.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 104 (2) ◽  
pp. 467-475 ◽  
Author(s):  
A.J. Winder ◽  
A. Wittbjer ◽  
E. Rosengren ◽  
H. Rorsman

Recent advances in the study of the molecular biology of mouse pigmentation have led to the discovery of a family of proteins involved in the control of melanin synthesis. It has been confirmed that the product of the mouse c (albino) locus is the key melanogenic enzyme tyrosinase, but study of its function and regulation have been hampered by the presence of closely related proteins within melanin-synthesising cells. To overcome these problems, we have established lines of mouse fibroblasts expressing the c locus mouse tyrosinase. Here we describe characterisation of the tyrosinase synthesised by these cells and demonstrate considerable similarity between the expressed tyrosinase and the native enzyme. The expressed tyrosinase is proteolytically cleaved to produce membrane-bound and soluble forms of the expected molecular mass and is rich in N-linked carbohydrate, suggesting that melanocytic differentiation is not a prerequisite for post-translational modification of the protein. The expressed enzyme has tyrosinase activity, but not catalase or dopachrome tautomerase activity, confirming that it is an authentic tyrosinase. Transfected fibroblasts expressing tyrosinase are shown to share several physiological characteristics with melanoma cell lines, including increased pigmentation and tyrosinase activity in response to increased cell density. Since tyrosinase is expressed under a heterologous promoter, these shared characteristics probably reflect translational or post-translational controls that operate in both non-melanocytic and melanocytic cell types. We demonstrate that pigmented fibroblasts contain the melanin synthesis intermediates 5-S-cysteinyldopa and 5-S-glutathionyl-dopa, and produce a phaeomelanin-like pigment, but do not contain detectable eumelanin. Expression of tyrosine is therefore sufficient for the synthesis of a form of melanin pigment in fibroblasts.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2021 ◽  
Author(s):  
Hans-Georg Sprenger ◽  
Thomas MacVicar ◽  
Amir Bahat ◽  
Kai Uwe Fiedler ◽  
Steffen Hermans ◽  
...  

AbstractCytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP–AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS–STING–TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS–STING–TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Álvaro Figueroa ◽  
Antonio Brante ◽  
Leyla Cárdenas

AbstractThe polychaete Boccardia wellingtonensis is a poecilogonous species that produces different larval types. Females may lay Type I capsules, in which only planktotrophic larvae are present, or Type III capsules that contain planktotrophic and adelphophagic larvae as well as nurse eggs. While planktotrophic larvae do not feed during encapsulation, adelphophagic larvae develop by feeding on nurse eggs and on other larvae inside the capsules and hatch at the juvenile stage. Previous works have not found differences in the morphology between the two larval types; thus, the factors explaining contrasting feeding abilities in larvae of this species are still unknown. In this paper, we use a transcriptomic approach to study the cellular and genetic mechanisms underlying the different larval trophic modes of B. wellingtonensis. By using approximately 624 million high-quality reads, we assemble the de novo transcriptome with 133,314 contigs, coding 32,390 putative proteins. We identify 5221 genes that are up-regulated in larval stages compared to their expression in adult individuals. The genetic expression profile differed between larval trophic modes, with genes involved in lipid metabolism and chaetogenesis over expressed in planktotrophic larvae. In contrast, up-regulated genes in adelphophagic larvae were associated with DNA replication and mRNA synthesis.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


1994 ◽  
Vol 302 (3) ◽  
pp. 729-735 ◽  
Author(s):  
J F Bateman ◽  
D Chan ◽  
I Moeller ◽  
M Hannagan ◽  
W G Cole

A heterozygous de novo G to A point mutation in intron 8 at the +5 position of the splice donor site of the gene for the pro alpha 1(I) chain of type I procollagen, COL1A1, was defined in a patient with type IV osteogenesis imperfecta. The splice donor site mutation resulted not only in the skipping of the upstream exon 8 but also unexpectedly had the secondary effect of activating a cryptic splice site in the next upstream intron, intron 7, leading to re-definition of the 3′ limit of exon 7. These pre-mRNA splicing aberrations cause the deletion of exon 8 sequences from the mature mRNA and the inclusion of 96 bp of intron 7 sequence. Since the mis-splicing of the mutant allele product resulted in the maintenance of the correct codon reading frame, the resultant pro alpha 1(I) chain contained a short non-collagenous 32-amino-acid sequence insertion within the repetitive Gly-Xaa-Yaa collagen sequence motif. At the protein level, the mutant alpha 1(I) chain was revealed by digestion with pepsin, which cleaved the mutant procollagen within the protease-sensitive non-collagenous insertion, producing a truncated alpha 1(I). This protease sensitivity demonstrated the structural distortion to the helical structure caused by the insertion. In long-term culture with ascorbic acid, which stimulates the formation of a mature crosslinked collagen matrix, and in tissues, there was no evidence of the mutant chain, suggesting that during matrix formation the mutant chain was unable to stably incorporated into the matrix and was degraded proteolytically.


Diabetes ◽  
1990 ◽  
Vol 39 (2) ◽  
pp. 157-167 ◽  
Author(s):  
H. Yki-Jarvinen ◽  
K. Sahlin ◽  
J. M. Ren ◽  
V. A. Koivisto

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mylène Tajan ◽  
Marc Hennequart ◽  
Eric C. Cheung ◽  
Fabio Zani ◽  
Andreas K. Hock ◽  
...  

AbstractMany tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


Sign in / Sign up

Export Citation Format

Share Document