scholarly journals Ubiquitin E3 ligases Atrogin-1 and MuRF1 protein contents are differentially regulated in the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 myotubes

2021 ◽  
Author(s):  
Yusuke Nishimura ◽  
Ibrahim Musa ◽  
Peter Dawson ◽  
Lars Holm ◽  
Yu-Chiang Lai

Muscle-specific ubiquitin E3 ligases, Atrogin-1 and MuRF1, are highly expressed in multiple conditions of skeletal muscle atrophy. The PI3K/Akt/FoxO signaling pathway is well known to regulate Atrogin-1 and MuRF1 gene expressions. Evidence supporting this is largely based on stimuli by insulin and IGF-1, that activate anabolic signaling, including Akt and Akt-dependent transcription factors. However, Akt activation also activates the mammalian target of rapamycin complex 1 (mTORC1) which induces skeletal muscle hypertrophy. However, whether mTORC1-dependent signaling has a role in regulating Atrogin-1 and/or MuRF1 gene and protein expression is currently unclear. In this study, we confirmed that activation of insulin-mediated Akt signaling suppresses both Atrogin-1 and MuRF1 protein content and that inhibition of Akt increases both Atrogin-1 and MuRF1 protein content in C2C12 myotubes. Interestingly, inhibition of mTORC1 using a specific mTORC1 inhibitor, rapamycin, increased Atrogin-1, but not MuRF1, protein content. Furthermore, activation of AMP-activated protein kinase (AMPK), a negative regulator of the mTORC1 signaling pathway, also showed distinct time-dependent changes between Atrogin-1 and MuRF1 protein content, suggesting differential regulatory mechanisms between Atrogin-1 and MuRF1 protein content. To further explore the downstream of mTORC1 signaling, we employed a specific S6K1 inhibitor, PF-4708671, and found that Atrogin-1 protein content was dose-dependently increased with PF-4708671 treatment, whereas MuRF1 protein content was not significantly altered. Overall, our results indicate that Atrogin-1 and MuRF1 protein contents are regulated by different mechanisms, the downstream of Akt, and that Atrogin-1 protein content can be regulated by rapamycin-sensitive mTOR-S6K1 dependent signaling pathway.

Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 284 ◽  
Author(s):  
Min-Kyeong Lee ◽  
Jeong-Wook Choi ◽  
Youn Hee Choi ◽  
Taek-Jeong Nam

Dexamethasone (DEX), a synthetic glucocorticoid, causes skeletal muscle atrophy. This study examined the protective effects of Pyropia yezoensis peptide (PYP15) against DEX-induced myotube atrophy and its association with insulin-like growth factor-I (IGF-I) and the Akt/mammalian target of rapamycin (mTOR)-forkhead box O (FoxO) signaling pathway. To elucidate the molecular mechanisms underlying the effects of PYP15 on DEX-induced myotube atrophy, C2C12 myotubes were treated for 24 h with 100 μM DEX in the presence or absence of 500 ng/mL PYP15. Cell viability assays revealed no PYP15 toxicity in C2C12 myotubes. PYP15 activated the insulin-like growth factor-I receptor (IGF-IR) and Akt-mTORC1 signaling pathway in DEX-induced myotube atrophy. In addition, PYP15 markedly downregulated the nuclear translocation of transcription factors FoxO1 and FoxO3a, and inhibited 20S proteasome activity. Furthermore, PYP15 inhibited the autophagy-lysosomal pathway in DEX-stimulated myotube atrophy. Our findings suggest that PYP15 treatment protected against myotube atrophy by regulating IGF-I and the Akt-mTORC1-FoxO signaling pathway in skeletal muscle. Therefore, PYP15 treatment appears to exert protective effects against skeletal muscle atrophy.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2729
Author(s):  
Sho Miyatake ◽  
Kazuo Hino ◽  
Yuko Natsui ◽  
Goro Ebisu ◽  
Satoshi Fujita

Inactivity leads to skeletal muscle atrophy, whereas intermittent loading (IL) during hind limb unloading (HU) attenuates muscle atrophy. However, the combined effects of IL and protein supplementation on disuse muscle atrophy are unclear. Therefore, we investigated the effects of IL and a high-protein oral nutritional supplement (HP) during HU on skeletal muscle mass and protein synthesis/breakdown. Male F344 rats were assigned to the control (CON), 14-day HU (HU), IL during HU (HU + IL), and IL during HU followed by HP administration (2.6 g protein/kg/day; HU + IL + HP) groups. Soleus and gastrocnemius muscles were sampled 30 min after the last IL and HP supplementation. HU decreased relative soleus and gastrocnemius muscle masses. Relative muscle masses and p70 ribosomal protein S6 kinase/ribosomal protein S6 phosphorylation in soleus and gastrocnemius muscles were higher in the HU + IL group than the HU group and further higher in the HU + IL + HP group than the HU + IL group in gastrocnemius muscle. Therefore, protein administration plus IL effectively prevented skeletal muscle atrophy induced by disuse, potentially via enhanced activation of targets downstream of mammalian target of rapamycin complex 1 (mTORC1) signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takaaki Higashihara ◽  
Hiroshi Nishi ◽  
Koji Takemura ◽  
Hiroshi Watanabe ◽  
Toru Maruyama ◽  
...  

AbstractIn patients with chronic kidney disease, skeletal muscle dysfunction is associated with mortality. Uremic sarcopenia is caused by ageing, malnutrition, and chronic inflammation, but the molecular mechanism and potential therapeutics have not been fully elucidated yet. We hypothesize that accumulated uremic toxins might exert a direct deteriorative effect on skeletal muscle and explore the pharmacological treatment in experimental animal and culture cell models. The mice intraperitoneally injected with indoxyl sulfate (IS) after unilateral nephrectomy displayed an elevation of IS concentration in skeletal muscle and a reduction of instantaneous muscle strength, along with the predominant loss of fast-twitch myofibers and intramuscular reactive oxygen species (ROS) generation. The addition of IS in the culture media decreased the size of fully differentiated mouse C2C12 myotubes as well. ROS accumulation and mitochondrial dysfunction were also noted. Next, the effect of the β2-adrenergic receptor (β2-AR) agonist, clenbuterol, was evaluated as a potential treatment for uremic sarcopenia. In mice injected with IS, clenbuterol treatment increased the muscle mass and restored the tissue ROS level but failed to improve muscle weakness. In C2C12 myotubes stimulated with IS, although β2-AR activation also attenuated myotube size reduction and ROS accumulation as did other anti-oxidant reagents, it failed to augment the mitochondrial membrane potential. In conclusion, IS provokes muscular strength loss (uremic dynapenia), ROS generation, and mitochondrial impairment. Although the β2-AR agonist can increase the muscular mass with ROS reduction, development of therapeutic interventions for restoring skeletal muscle function is still awaited.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


1994 ◽  
Vol 267 (2) ◽  
pp. R365-R371 ◽  
Author(s):  
J. K. Linderman ◽  
K. L. Gosselink ◽  
F. W. Booth ◽  
V. R. Mukku ◽  
R. E. Grindeland

Unweighting of rat hindlimb muscles results in skeletal muscle atrophy, decreased protein synthesis, and reduced growth hormone (GH) secretion. Resistance exercise (ladder climbing) and GH treatment partially attenuate skeletal muscle atrophy in hypophysectomized hindlimb-suspended rats. It was hypothesized that a combination of multiple bouts of daily resistance exercise and GH (1 mg.kg-1.day-1) would prevent skeletal muscle atrophy in growing nonhypophysectomized hindlimb-suspended rats. Hindlimb suspension decreased the absolute (mg/pair) and relative (mg/100 g body wt) weights of the soleus, a slow-twitch plantar flexor, by 30 and 21%, respectively, and the absolute and relative weights of the gastrocnemius, a predominantly fast-twitch plantar flexor, by 20 and 11%, respectively (P < 0.05). Exercise did not increase soleus mass but attenuated loss of relative wet weight in the gastrocnemius muscles of hindlimb-suspended rats (P < 0.05). Hindlimb suspension decreased gastrocnemius myofibrillar protein content and synthesis (mg/day) by 26 and 64%, respectively (P < 0.05). The combination of exercise and GH attenuated loss of gastrocnemius myofibrillar protein content and synthesis by 70 and 23%, respectively (P < 0.05). Results of the present investigation indicate that a combination of GH and resistance exercise attenuates atrophy of unweighted fast-twitch skeletal muscles.


2020 ◽  
Vol 21 (13) ◽  
pp. 4815 ◽  
Author(s):  
Ekaterina P. Mochalova ◽  
Svetlana P. Belova ◽  
Tatiana Y. Kostrominova ◽  
Boris S. Shenkman ◽  
Tatiana L. Nemirovskaya

Unloading leads to skeletal muscle atrophy via the upregulation of MuRF-1 and MAFbx E3-ligases expression. Reportedly, histone deacetylases (HDACs) 4 and 5 may regulate the expression of MuRF1 and MAFbx. To examine the HDAC-dependent mechanisms involved in the control of E3-ubiquitin ligases expression at the early stages of muscle unloading we used HDACs 4 and 5 inhibitor LMK-235 and HDAC 4 inhibitor Tasqinimod (Tq). Male Wistar rats were divided into four groups (eight rats per group): nontreated control (C), three days of unloading/hindlimb suspension (HS) and three days HS with HDACs inhibitor LMK-235 (HSLMK) or Tq (HSTq). Treatment with LMK-235 diminished unloading-induced of MAFbx, myogenin (MYOG), ubiquitin and calpain-1 mRNA expression (p < 0.05). Tq administration had no effect on the expression of E3-ligases. The mRNA expression of MuRF1 and MAFbx was significantly increased in both HS and HSTq groups (1.5 and 4.0 folds, respectively; p < 0.05) when compared with the C group. It is concluded that during three days of muscle unloading: (1) the HDACs 4 and 5 participate in the regulation of MAFbx expression as well as the expression of MYOG, ubiquitin and calpain-1; (2) the inhibition of HDAC 4 has no effect on MAFbx expression. Therefore, HDAC 5 is perhaps more important for the regulation of MAFbx expression than HDAC 4.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S85-S86
Author(s):  
Bo-Kyung Son ◽  
Masato Eto ◽  
Miya Oura ◽  
Masahiro Akishita

Abstract Background: Physical exercise is well documented to induce muscle size, strength, and energy metabolism. Although the contribution of systemic or local androgen in exercise-adapted muscle hypertrophy has been suggested, less is known about the molecular pathway of androgen in response to exercise. In the present study, we examined roles of androgen/androgen receptor (AR) after exercise, especially for the suppression of myostatin, a potent negative regulator of muscle mass. Methods and Results: To examine the effects of exercise, we employed low-intensity exercise in mice and electric pulse stimulation (EPS) in C2C12 myotubes. Both mRNA and protein levels of AR significantly increased in skeletal muscle of low-intensity exercised mice and C2C12 myotubes exposed to EPS. Production of testosterone and DHT from EPS-treated C2C12 myotubes was markedly increased. Of interest, we found that myostatin was clearly inhibited by EPS, and its inhibition was significantly abrogated by flutamide, a specific antagonist of AR. Furthermore, IL-6 and phospho-STAT3 (pSTAT3) expression, the downstream pathway of myostatin, were decreased by EPS and this was also reversed by flutamide. Similar downregulation of myostatin and IL-6 was seen in skeletal muscle of low-intensity exercised mice. Conclusion: Muscle AR expression and androgen production were increased by exercise and EPS treatment. As a mechanistical insight, it is suggested that AR inhibited myostatin expression transcriptionally, which downregulates IL-6/pSTAT3 pathway and thus contributes to the prevention of muscle degradation.


2020 ◽  
Vol 318 (3) ◽  
pp. E330-E342 ◽  
Author(s):  
Yingying Yue ◽  
Chang Zhang ◽  
Xuejiao Zhang ◽  
Shitian Zhang ◽  
Qian Liu ◽  
...  

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.


2020 ◽  
Vol 21 (3) ◽  
pp. 1167 ◽  
Author(s):  
Javier Aravena ◽  
Johanna Abrigo ◽  
Francisco Gonzalez ◽  
Francisco Aguirre ◽  
Andrea Gonzalez ◽  
...  

Myostatin is a myokine that regulates muscle function and mass, producing muscle atrophy. Myostatin induces the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. The main pathway that mediates protein degradation during muscle atrophy is the ubiquitin proteasome system, by increasing the expression of atrogin-1 and MuRF-1. In addition, myostatin activates the NF-κB signaling pathway. Renin–angiotensin system (RAS) also regulates muscle mass. Angiotensin (1-7) (Ang-(1-7)) has anti-atrophic properties in skeletal muscle. In this paper, we evaluated the effect of Ang-(1-7) on muscle atrophy and signaling induced by myostatin. The results show that Ang-(1-7) prevented the decrease of the myotube diameter and myofibrillar protein levels induced by myostatin. Ang-(1-7) also abolished the increase of myostatin-induced reactive oxygen species production, atrogin-1, MuRF-1, and TNF-α gene expressions and NF-κB signaling activation. Ang-(1-7) inhibited the activity mediated by myostatin through Mas receptor, as is demonstrated by the loss of all Ang-(1-7)-induced effects when the Mas receptor antagonist A779 was used. Our results show that the effects of Ang-(1-7) on the myostatin-dependent muscle atrophy and signaling are blocked by MK-2206, an inhibitor of Akt/PKB. Together, these data indicate that Ang-(1-7) inhibited muscle atrophy and signaling induced by myostatin through a mechanism dependent on Mas receptor and Akt/PKB.


Sign in / Sign up

Export Citation Format

Share Document