scholarly journals Cooperative electrolyte-PEG interactions drive the signal amplification in a solid-state nanopore

2021 ◽  
Author(s):  
Chalmers C Chau ◽  
Fabio Marcuccio ◽  
Dimitrios Soulias ◽  
Martin Andrew Edwards ◽  
Sheena E Radford ◽  
...  

Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single molecule resolution. However, the analysis of several analytes like short nucleic acids or proteins with nanopores represents a sensitivity challenge, because their translocation lead to small signals difficult to distinguish from the noise. Here, we report a simple method to enhance the signal to noise ratio in nanopore experiments by a simple modification of the solution used in nanopore sensing. The addition of poly-ethylene glycol (PEG) and the careful selection of the supporting electrolyte leads to large signal enhancement. We observed that the translocation dynamics are in good agreement with an established method that uses the lattice energy of an electrolyte to approximate the affinity of an ion to PEG. We identified CsBr as the optimal supporting electrolyte to complement PEG to enable the analysis of dsDNA at 500 kHz bandwidth, and the detection of dsDNA as short as 75 bp.

2021 ◽  
Author(s):  
Lukas Stolz ◽  
Gerrit Homann ◽  
Martin Winter ◽  
Johannes Kasnatscheew

Cell failure of polymer electrolytes is rather the result of short circuits instead of assumed electrolyte oxidation. A spacer with a constant and defined distance can avoid this failure, thus realize a benchmark system for a more systematic R&D.


1979 ◽  
Vol 69 (5) ◽  
pp. 1445-1454
Author(s):  
John A. Linton ◽  
D. E. Smylie ◽  
O. G. Jensen

abstract Free modes with signal-to-noise ratio in the range of 40 to 55 dB were observed in the record taken by a vertical broadband quartz fiber gravimeter system opeating in Montreal following the event of August 19, 1977 in Indonesia. The large signal-to-noise ratio has permitted very stable Q estimates to be made for a number of the fundamental spheroidal modes. The very long-period band shows no definitive evidence of signal other than the expected tidal lines.


2021 ◽  
Author(s):  
Berkin Uluutku ◽  
Santiago D. Solares

Abstract Quantitative measurement of the probe-sample interaction forces as a function of distance and time during imaging has been at the forefront of atomic force microscopy (AFM) research. This type of information is extremely valuable for understanding the material response to a variety of stimuli and interactions, such as mechanical deformations that vary in magnitude and rate of application, chemical interactions, or electromagnetic interactions. A variety of methods for performing such measurements simultaneously with topographical imaging is available, including methods based on Fourier analysis. Within these methods, reconstruction of the tip-sample force curve generally requires measurement of a large number of harmonics of the probe oscillation, which presents challenges such as the need for specialized hardware, low signal-to-noise ratio, and the need for extensive user expertise. In this paper, we present a simple method to perform a Gaussian-model-based fit of the tip-sample force curve across the surface, simultaneously with imaging, which requires measurement of only the first two or three harmonics for elastic materials. While such an approach only offers an approximate representation of the force curve, it can be highly accurate and fast, and has low instrumentation requirements, such that it can be relatively simple to implement on most commercial AFM setups.


2018 ◽  
Vol 7 (3) ◽  
pp. 1096 ◽  
Author(s):  
Hana Adela ◽  
Kamarul Azmi Jasmi ◽  
Bushrah Basiron ◽  
Miftachul Huda ◽  
Andino Maseleno

Travel and dance form in Indonesia is closely related to the development of community life, both in terms of ethnic structure and within the scope of the unitary state. This study determines the criteria for selecting dancer members and how to apply the qualified Simple method. Based on predetermined criteria is the ability to dance physical flexibility, skilled, nimble, confident, have the ability, fill out the form, and certificate of achievement. From the results obtained values then V1, V2, V3, V4, V5 is a member of a qualified dancer and has a highest value with a score of 100 which was obtained from V2. 


2003 ◽  
Vol 90 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Weili Bao ◽  
Jian-Young Wu

Neocortical “theta” oscillation (5–12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (∼8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike,” a “regular” period (with relatively stable frequency and amplitude), and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation, one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ∼50 mm/s. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ≤300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.


2014 ◽  
Vol 41 (4) ◽  
pp. 292-296
Author(s):  
Luiz Carlos Buarque Gusmão ◽  
Sérgio Henrique Chagas Valoes ◽  
José da Silva Leitão Neto

The objective is to reinforce the importance of blood reinfusion as a cheap, safe and simple method, which can be used in small hospitals, especially those in which there is no blood bank. Moreover, even with the use of devices that perform the collection and filtration of blood, more recent studies show that the cost-benefit ratio is much better when autologous transfusion is compared with blood transfusions, even when there is injury to hollow viscera and blood contamination. It is known that the allogeneic blood transfusion carries a number of risks to patients, among them are the coagulation disorders mediated by excess enzymes in the conserved blood, and deficiency in clotting factors, mainly the Factor V, the proacelerin. Another factor would be the risk of contamination with still unknown pathogens or that are not investigated during screening for selection of donors, such as the West Nile Fever and Creutzfeldt-Jacob, better known as "Mad Cow" disease. Comparing both methods, we conclude that blood autotransfusion has numerous advantages over heterologous transfusion, even in large hospitals. We are not against blood transfusions, just do not agree that the patient's own blood is discarded without making sure there will be enough blood in stock to get him out of the hemorrhagic shock.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. V141-V150 ◽  
Author(s):  
Emanuele Forte ◽  
Matteo Dossi ◽  
Michele Pipan ◽  
Anna Del Ben

We have applied an attribute-based autopicking algorithm to reflection seismics with the aim of reducing the influence of the user’s subjectivity on the picking results and making the interpretation faster with respect to manual and semiautomated techniques. Our picking procedure uses the cosine of the instantaneous phase to automatically detect and mark as a horizon any recorded event characterized by lateral phase continuity. A patching procedure, which exploits horizon parallelism, can be used to connect consecutive horizons marking the same event but separated by noise-related gaps. The picking process marks all coherent events regardless of their reflection strength; therefore, a large number of independent horizons can be constructed. To facilitate interpretation, horizons marking different phases of the same reflection can be automatically grouped together and specific horizons from each reflection can be selected using different possible methods. In the phase method, the algorithm reconstructs the reflected wavelets by averaging the cosine of the instantaneous phase along each horizon. The resulting wavelets are then locally analyzed and confronted through crosscorrelation, allowing the recognition and selection of specific reflection phases. In case the reflected wavelets cannot be recovered due to shape-altering processing or a low signal-to-noise ratio, the energy method uses the reflection strength to group together subparallel horizons within the same energy package and to select those satisfying either energy or arrival time criteria. These methods can be applied automatically to all the picked horizons or to horizons individually selected by the interpreter for specific analysis. We show examples of application to 2D reflection seismic data sets in complex geologic and stratigraphic conditions, critically reviewing the performance of the whole process.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1587 ◽  
Author(s):  
Jose I. Lopez ◽  
Jesus M. Cortes

We recently showed that in order to detect intra-tumor heterogeneity a Divide-and-Conquer (DAC) strategy of tumor sampling outperforms current routine protocols. This paper is a continuation of this work, but here we focus on DAC implementation in the Pathology Laboratory. In particular, we describe a new simple method that makes use of a cutting grid device and is applied to clear cell renal cell carcinomas for DAC implementation. This method assures a thorough sampling of large surgical specimens, facilitates the demonstration of intratumor heterogeneity, and saves time to pathologists in the daily practice. The method involves the following steps: 1. Thin slicing of the tumor (by hand or machine), 2. Application of a cutting grid to the slices (e.g., a French fry cutter), resulting in multiple tissue cubes with fixed position within the slice, 3. Selection of tissue cubes for analysis, and finally, 4. Inclusion of selected cubes into a cassette for histological processing (with about eight tissue fragments within each cassette). Thus, using our approach in a 10 cm in-diameter-tumor we generate 80 tumor tissue fragments placed in 10 cassettes and, notably, in a tenth of time. Eighty samples obtained across all the regions of the tumor will assure a much higher performance in detecting intratumor heterogeneity, as proved recently with synthetic data.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243319
Author(s):  
Takeshi Hanami ◽  
Tetsuya Tanabe ◽  
Takuya Hanashi ◽  
Mitsushiro Yamaguchi ◽  
Hidetaka Nakata ◽  
...  

Here, we report a rapid and ultra-sensitive detection technique for fluorescent molecules called scanning single molecular counting (SSMC). The method uses a fluorescence-based digital measurement system to count single molecules in a solution. In this technique, noise is reduced by conforming the signal shape to the intensity distribution of the excitation light via a circular scan of the confocal region. This simple technique allows the fluorescent molecules to freely diffuse into the solution through the confocal region and be counted one by one and does not require statistical analysis. Using this technique, 28 to 62 aM fluorescent dye was detected through measurement for 600 s. Furthermore, we achieved a good signal-to-noise ratio (S/N = 2326) under the condition of 100 pM target nucleic acid by only mixing a hybridization-sensitive fluorescent probe, called Eprobe, into the target oligonucleotide solution. Combination of SSMC and Eprobe provides a simple, rapid, amplification-free, and high-sensitive target nucleic acid detection system. This method is promising for future applications to detect particularly difficult to design primers for amplification as miRNAs and other short oligo nucleotide biomarkers by only hybridization with high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document