scholarly journals Investigating Increased CO2 concentration on the pH of various plant species

2021 ◽  
Author(s):  
Joshua Schafer ◽  
Troy Puga ◽  
Pearce Harris ◽  
Nora Strasser ◽  
Gary Branum ◽  
...  

The concept of bioremediation is quickly becoming the norm in the resolution of environmental issues. The steady increase in carbon dioxide levels, as documented by NASA, inspired scientists to engineer plants to absorb excess carbon dioxide from the atmosphere. Here, we have explored the consequences of the uptake of excess carbon dioxide by select plants. Carbon dioxide dissolves in water to produce carbonic acid, which dissociates to yield H+ ions. We hypothesized that increased carbon dioxide absorption results in decrease in pH of plant sap. Three plants (Byophyllum pinnatum, Romaine Lettuce and Nevada Lettuce), exposed to increased carbon dioxide concentrations (15%), demonstrated a consistent increase in pH towards alkalinity compared to control plants. Based on the outcome being opposite of what we have hypothesized, our results suggest Byophyllum pinnatum, Romaine lettuce and Nevada lettuce, all have a unique homeostatic system to prevent over-absorption of carbon dioxide in a carbon dioxide-rich environment.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Philipp de Vrese ◽  
Tobias Stacke ◽  
Jeremy Caves Rugenstein ◽  
Jason Goodman ◽  
Victor Brovkin

AbstractSimple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Arash Esmaeili ◽  
◽  
Zhibang Liu ◽  
Yang Xiang ◽  
Jimmy Yun ◽  
...  

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E- NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.


2016 ◽  
Vol 56 (1) ◽  
pp. 108 ◽  
Author(s):  
Mei Bai ◽  
David W. T. Griffith ◽  
Frances A. Phillips ◽  
Travis Naylor ◽  
Stephanie K. Muir ◽  
...  

Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.


2018 ◽  
Vol 12 (4) ◽  
pp. 4088-4097
Author(s):  
S. Ma’mun ◽  
Hallvard F. Svendsen ◽  
I. M. Bendiyasa

Global emission of carbon dioxide (CO2), a major contributor to the climate change, has increased annually and it reached over 37 Gt in 2017. An effort to reduce the emission, therefore, needs to be conducted, e.g. post-combustion capture by use of amine-based absorption. The objective of this study is to evaluate the kinetic and mass transfer parameters in a CO2 absorption process using monoethanolamine (MEA), 2-(methylamino)ethanol (MMEA), and 2-(ethylamino)ethanol (EMEA) as absorbents. The experiments were conducted in a bubble reactor at atmospheric pressure and 40 °C with 10-vol% CO2 flowrate of 5 NL/men. The CO2 concentration leaving the reactor was measured by an IR CO2 analyzer. The results obtained from this experiment were the overall absorption rates consisting of both chemical reaction and mass transfer. Analysis result shows that the reaction between CO2 and amines takes place fast, therefore the mass transfer of CO2 from the gas into the liquid through the gas film would control the overall absorption rate.


EDIS ◽  
2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Joshua T. Patterson ◽  
Lisa S. Krimsky

Ocean acidification (OA) generally refers to the ongoing decrease in ocean pH. Ocean acidification is caused primarily by the oceanic uptake of excess carbon dioxide (CO2) from the atmosphere. Other impacts related to climate change (increased sea level rise, coastal flooding and extreme weather events) often receive more attention than OA, but the acidification of the Earth’s oceans is well documented and is a major concern for the marine science community. This publication is the first in a series that addresses ocean acidification in Florida. It specifically explains the changes that are occurring to the chemistry of our coastal and oceanic waters because of elevated carbon dioxide levels. Additional publications address potential environmental, economic, and social implications for Florida.  


2020 ◽  
Author(s):  
Marcus P. S. Badger

Abstract. Coccolithophores and other haptophyte algae acquire the carbon required for metabolic processes from the water in which they live. Whether carbon is actively moved across the cell membrane via a carbon concentrating mechanism, or passively through diffusion, is important for haptophyte biochemistry. The possible utilisation of carbon concentrating mechanisms also has the potential to over-print one proxy method by which ancient atmospheric CO2 is reconstructed using alkenone isotopes. Here I show that carbon concentrating mechanisms are likely used when aqueous carbon dioxide concentrations are below 7 μmol L−1. I use published alkenone based CO2 reconstructions from multiple sites over the Pleistocene, which allows comparison to be made with ice core CO2 records. Interrogating these records reveal that the relationship between proxy- and ice core-CO2 breaks down when local aqueous CO2 concentration falls below 7 μmol L−1. The recognition of this threshold explains why many alkenone based CO2 records fail to accurately replicate ice core CO2 records, and suggests the alkenone proxy is likely robust for much of the Cenozoic when this threshold was unlikely to be reached in much of the global ocean.


2021 ◽  
Vol 18 (3) ◽  
pp. 1149-1160
Author(s):  
Marcus P. S. Badger

Abstract. Coccolithophores and other haptophyte algae acquire the carbon required for metabolic processes from the water in which they live. Whether carbon is actively moved across the cell membrane via a carbon concentrating mechanism, or passively through diffusion, is important for haptophyte biochemistry. The possible utilization of carbon concentrating mechanisms also has the potential to over-print one proxy method by which ancient atmospheric CO2 concentration is reconstructed using alkenone isotopes. Here I show that carbon concentrating mechanisms are likely used when aqueous carbon dioxide concentrations are below 7 µmol L−1. I compile published alkenone-based CO2 reconstructions from multiple sites over the Pleistocene and recalculate them using a common methodology, which allows comparison to be made with ice core CO2 records. Interrogating these records reveals that the relationship between proxy CO2 and ice core CO2 breaks down when local aqueous CO2 concentration falls below 7 µmol L−1. The recognition of this threshold explains why many alkenone-based CO2 records fail to accurately replicate ice core CO2 records, and it suggests the alkenone proxy is likely robust for much of the Cenozoic when this threshold was unlikely to be reached in much of the global ocean.


1999 ◽  
Vol 3 (1) ◽  
pp. 39-53 ◽  
Author(s):  
A. D. Culf ◽  
G. Fisch ◽  
Y. Malhi ◽  
R. Carvalho Costa ◽  
A. D. Nobre ◽  
...  

Abstract. Measurements of carbon dioxide concentration, temperature and windspeed were made in the nocturnal boundary layer over a tropical forest near Manaus, Brazil using a tethered balloon system. The measurements were made up to a maximum height of 300 m on ten consecutive nights in November 1995. Simultaneous surface flux and in-canopy concentration measurements were made at the surface close to the site. The observation period included several different types of conditions. Generally strong windshear and relatively weak temperature gradients prevented the formation of a strong capping inversion to the nocturnal boundary layer. On some nights, however, the inversion was sufficiently strong that the CO2 concentration at 100 m above the surface exceeded 400 ppm. The concentration within the canopy was largely controlled by the presence of an inversion very close to the canopy surface. The temperature and wind profiles are contrasted with conditions in Randônia, Brazil, where the windshear was found to be weaker and higher carbon dioxide concentrations were observed in the early morning. The difference in carbon dioxide concentrations in the nocturnal boundary layer between dusk and dawn is used to estimate the regional nighttime flux of carbon dioxide. The value obtained generally exceeds the measured surface flux and sometimes exceeds the sum of the surface flux and the in-canopy storage made at the tower site. The reasons for the discrepancy are not clear; either one of the methods is in error or the regional carbon dioxide budget differs significantly from the local budget measured at the tower site.


Author(s):  
Stefanos A. Nastis ◽  
Eirini Grammatiki Pagoni

Abstract The global climate system poses important challenges for the perception and understanding of its functioning from policymakers and the general public. The aim of the paper is to model through gamification, the evolution of understanding regarding the dynamics of climate change and climate change adaptation. Using a framework with repeated feedback loops, the impact of the rate of carbon dioxide absorption by natural ecosystems, the stochastic nature of economic systems and the stochastic and irreversible nature of global climate are analyzed, with the Dynamic Climate Change Simulator with Stochastic and Irreversible Climate Change. The simulator game models one control variable, carbon dioxide emissions and one stock variable, carbon dioxide concentrations in the atmosphere. In addition, the rate of carbon dioxide absorption by natural ecosystems is modeled, with business cycle shocks and climate change tipping points. The ability to control carbon dioxide concentrations to a goal level is evaluated and policy insights are provided about how learning about the dynamics of the Earth’s climate through gamification can be advanced.


2021 ◽  
Vol 287 ◽  
pp. 02007
Author(s):  
Nur Farhana Ajua Mustafa ◽  
Azmi Mohd Shariff ◽  
WeeHorng Tay ◽  
Siti Munirah Mhd Yusof

This paper presented the effect of CO2 concentration in the gas feed to the CO2 absorption performance using a green solvent, potassium carbonate promoted with glycine (PCGLY). Recently, the performance of this solvent (with precipitates) was hindered by its poor mass transfer performance due to the blockage in packings and piping. Therefore, this study focused to study the CO2 absorption performance of non-precipitating potassium carbonate promoted with glycine. This green solvent contains aqueous blend of 15wt% potassium carbonate and 3 wt% glycine. The absorption performance of the solvent was obtained by demonstrated a few experimental works using a bench scale packed absorption column. The packing type was Sulzer metal gauze and the column consisted of six sampling point which located equidistance along the packing.The effect of CO2 concentration at the gas feed was assessed in term of its CO2 removal efficiency and concentration profile along the packing. The study shows the decreasing trend of CO2 removal as CO2 inlet concentration in the gas feed increases. The reason of this behavior is due to the limited reactant of liquid phase to absorb high CO2 concentration in gas phase. The main outcome of this study demonstrated the efficient absorption which can absorb up to 79.24 % of CO2 from natural gas using non-precipitated PCGLY.


Sign in / Sign up

Export Citation Format

Share Document