scholarly journals Assessment of carbon dioxide separation by amine solutions using electrolyte non-random two-liquid and Peng-Robinson models: Carbon dioxide absorption efficiency

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Arash Esmaeili ◽  
◽  
Zhibang Liu ◽  
Yang Xiang ◽  
Jimmy Yun ◽  
...  

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E- NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

2018 ◽  
Vol 12 (4) ◽  
pp. 4088-4097
Author(s):  
S. Ma’mun ◽  
Hallvard F. Svendsen ◽  
I. M. Bendiyasa

Global emission of carbon dioxide (CO2), a major contributor to the climate change, has increased annually and it reached over 37 Gt in 2017. An effort to reduce the emission, therefore, needs to be conducted, e.g. post-combustion capture by use of amine-based absorption. The objective of this study is to evaluate the kinetic and mass transfer parameters in a CO2 absorption process using monoethanolamine (MEA), 2-(methylamino)ethanol (MMEA), and 2-(ethylamino)ethanol (EMEA) as absorbents. The experiments were conducted in a bubble reactor at atmospheric pressure and 40 °C with 10-vol% CO2 flowrate of 5 NL/men. The CO2 concentration leaving the reactor was measured by an IR CO2 analyzer. The results obtained from this experiment were the overall absorption rates consisting of both chemical reaction and mass transfer. Analysis result shows that the reaction between CO2 and amines takes place fast, therefore the mass transfer of CO2 from the gas into the liquid through the gas film would control the overall absorption rate.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 302
Author(s):  
Luke Chen ◽  
Chii-Dong Ho ◽  
Li-Yang Jen ◽  
Jun-Wei Lim ◽  
Yu-Han Chen

We investigated the insertion of eddy promoters into a parallel-plate gas–liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide—MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number’s correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization’s effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.


2021 ◽  
Vol 287 ◽  
pp. 02007
Author(s):  
Nur Farhana Ajua Mustafa ◽  
Azmi Mohd Shariff ◽  
WeeHorng Tay ◽  
Siti Munirah Mhd Yusof

This paper presented the effect of CO2 concentration in the gas feed to the CO2 absorption performance using a green solvent, potassium carbonate promoted with glycine (PCGLY). Recently, the performance of this solvent (with precipitates) was hindered by its poor mass transfer performance due to the blockage in packings and piping. Therefore, this study focused to study the CO2 absorption performance of non-precipitating potassium carbonate promoted with glycine. This green solvent contains aqueous blend of 15wt% potassium carbonate and 3 wt% glycine. The absorption performance of the solvent was obtained by demonstrated a few experimental works using a bench scale packed absorption column. The packing type was Sulzer metal gauze and the column consisted of six sampling point which located equidistance along the packing.The effect of CO2 concentration at the gas feed was assessed in term of its CO2 removal efficiency and concentration profile along the packing. The study shows the decreasing trend of CO2 removal as CO2 inlet concentration in the gas feed increases. The reason of this behavior is due to the limited reactant of liquid phase to absorb high CO2 concentration in gas phase. The main outcome of this study demonstrated the efficient absorption which can absorb up to 79.24 % of CO2 from natural gas using non-precipitated PCGLY.


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


Author(s):  
M. Nuckols ◽  
S. Kolaczkowski ◽  
S. Awdry ◽  
T. Smith ◽  
D. Thomas

Traditional CO2 absorption methods for underwater life support equipment use alkali metal hydroxide chemical beds — mostly calcium hydroxide — that have been shown to have poor absorption efficiencies at cold temperatures, and must be replaced at considerable trouble and expense on a frequent basis. With chemical utilizations as low as 20% in water temperatures of 2°C, these hydroxides do not lend themselves to applications requiring extended durations in cold water due to the inability to carry sufficient quantities of expendables. A joint research effort between Duke University and the University of Bath has verified the feasibility in laboratory trials of an alternative carbon dioxide removal method that intimately mixes seawater with breathing circuit gases within a packed bed of Dixon rings. Based on the results of these laboratory trials, two multi-path scrubber prototypes were designed and fabricated for unmanned testing. In March 2013, the hyperbaric performance of these prototype scrubbers was characterized over a wide range of gas and water flow rates when operating the scrubbers in counter-current (water flowing in the opposite direction as gas flow) and co-current (water flowing in the same direction as gas flow) fashion. Significant findings from these tests included the following: • Both scrubber prototypes were found to be capable of delivering exit CO2 levels below 0.5 vol% (surface equivalent) at respiratory rates up to 22.5 liters per minute and at depths ranging from 0 to 40 meters of seawater (MSW). • Negligible collateral O2 absorption was observed at surface pressure (exit O2 levels were typically above 20.2 vol%), and exit O2 levels were typically above 18.4% during testing at 10 MSW. • At surface pressure, both prototypes had significantly lower breathing resistances than design goals established by the U. S. Navy.


2017 ◽  
Vol 231 (11-12) ◽  
Author(s):  
Humbul Suleman ◽  
Abdulhalim Shah Maulud ◽  
Zakaria Man

AbstractA computationally simple thermodynamic framework has been presented to correlate the vapour-liquid equilibria of carbon dioxide absorption in five representative types of alkanolamine mixtures. The proposed model is an extension of modified Kent Eisenberg model for the carbon dioxide loaded aqueous alkanolamine mixtures. The model parameters are regressed on a large experimental data pool of carbon dioxide solubility in aqueous alkanolamine mixtures. The model is applicable to a wide range of temperature (298–393 K), pressure (0.1–6000 kPa) and alkanolamine concentration (0.3–5 M). The correlated results are compared to the experimental values and found to be in good agreement with the average deviations ranging between 6% and 20%. The model results are comparable to other thermodynamic models.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5225
Author(s):  
Hui Zhang ◽  
Wenling Jin ◽  
Mengpeng Hu ◽  
Mai Hu ◽  
Jingqiu Liang ◽  
...  

We have developed a rapid quartz enhanced spectrophone for carbon dioxide (CO2) measurement, in which the laser wavelength was tightly locked to a CO2 absorption line and a custom quartz tuning fork (QTF) operating at 12.5 kHz was employed. The intrinsic QTF oscillation-limited response time, as well as the optimal feedback interval, was experimentally investigated. By tightly locking the laser to the R(16) transition of CO2, we obtained a stable laser operation with its center wavelength variation kept within 0.0002 cm−1, merely three times the laser linewidth. The reported CO2 sensor achieved a detection limit of 7 ppm, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 4.7 × 10−9 W·cm−1·Hz−1/2, at a response time of 0.5 s. The detection limit can be further improved to 0.45 ppm at an integration time of 270 s, illustrating a good system stability. This spectrophone enables the realization of compact and fast-response gas sensors for many scenarios, where CO2 concentration from sub-ppm to hundreds of thousands of ppm is expected.


2018 ◽  
Vol 207 ◽  
pp. 03005 ◽  
Author(s):  
Nguyen Hoc Thang ◽  
Nguyen Hoang Luong Ngoc ◽  
Vo Thi Nha Uyen ◽  
Pham Trung Kien

Carbon dioxide (CO2) is a gas which causes both impact to atmosphere (one of greenhouse gases) and decrease heating value of gaseous fuel (such as natural gas, biogas, landfill and sewage gas). Hence, there are many investigations to find solutions for gas treatment and carbon dioxide absorption from researchers. Catalyst or synthesized materials is to optimize processes of CO2 treatment and absorption to obtain the best benefit for factories and community. This study utilized industrial wastes of red mud and bagasse in combination with bentonite to synthesis the novel material (absorbent) responding requirements for the process of gas treatment. More specially, raw materials are impacting negatively on the environment. In which, red mud is solid waste of Bayer process from bauxite mining which is being the hard problem to have solutions for its management and utilization and bagasse is industrial waste of sugar factories. Wet pressing method was applied to form the absorbent samples by mixing red mud, bagasse, bentonite, and water in mixtures. The samples were put in furnace for heating process at 300°C for 2 hours. The final samples were characterized for microstructure using X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). And then the absorbents were tested for gas absorption capacity of carbon dioxide. The results showed a potential application of the novel absorbent materials for gas treatment.


2020 ◽  
Vol 15 (3) ◽  
pp. 361-367
Author(s):  
Ravinder Kumar ◽  
Rajesh Mangalapuri ◽  
Mohammad Hossein Ahmadi ◽  
Dai-Viet N Vo ◽  
Rajniesh Solanki ◽  
...  

Abstract At present, higher greenhouse gas (GHG) have triggered global efforts to reduce their level as much as possible for sustainable development. Carbon dioxide is one of the imperative anthropogenic emissions due to its increased excessive accumulation in the environment. Thus, serious attention is required to reduce the level of CO2 using advanced and efficient CO2 capture technologies. Carbon dioxide capture and storage (CCS) technologies may play an important role in this direction. At present, solvent-based sorbents are being utilized in CO2 capture for various industrial processes. In this category, the characters of non-materials are playing a crucial role to improve the CO2 absorption capacity of the process. This study is mainly focused on the role of nanotechnology in the post-combustion CO2 absorption process. The functions of nanomaterials and nanoparticles have been studied in the present work. Additionally, various challenges related to absorption efficiency using nanomaterials have been discussed. The study concludes that the higher thermal stability and exceptional properties of nanomaterials popularized them for use in CO2 capture processes.


Sign in / Sign up

Export Citation Format

Share Document