scholarly journals Dynamics of alpha suppression and enhancement may be related to resource competition in cross-modal cortical regions

2021 ◽  
Author(s):  
Grace M Clements ◽  
Mate Gyurkovics ◽  
Kathy A Low ◽  
Diane M Beck ◽  
Monica Fabiani ◽  
...  

In the face of multiple sensory streams, there may be competition for processing resources in multimodal cortical area devoted to establishing representations. In such cases, alpha oscillations may serve to maintain the relevant representations and protect them from interference, whereas theta oscillations may facilitate their updating when needed. It can be hypothesized that these oscillations would differ in response to an auditory stimulus when the eyes are open or closed, as intermodal resource competition may be more prominent in the former than in the latter case. Across two studies we investigated the role of alpha and theta power in multimodal competition using an auditory task with the eyes open and closed, respectively enabling and disabling visual processing in parallel with the incoming auditory stream. In a passive listening task (Study 1a), we found alpha suppression following a pip tone with both eyes open and closed, but subsequent alpha enhancement only with closed eyes. We replicated this eyes-closed alpha enhancement in an independent sample (Study 1b). In an active auditory oddball task (Study 2), we again observed the eyes open/eyes closed alpha pattern found in Study 1 and also demonstrated that the more attentionally demanding oddball trials elicit the largest oscillatory effects. Theta power did not interact with eye status in either study. We propose a hypothesis to account for the findings in which alpha may be endemic to multimodal cortical areas in addition to visual ones.

2005 ◽  
Vol 36 (2) ◽  
pp. 64-75 ◽  
Author(s):  
E. Gordon ◽  
N. Cooper ◽  
C. Rennie ◽  
D. Hermens ◽  
L.M. Williams

Most brain related databases bring together specialized information, with a growing number that include neuroimaging measures. This article outlines the potential use and insights from the first entirely standardized and centralized database, which integrates information from neuroimaging measures (EEG, event related potential (ERP), structural/functional MRI), arousal (skin conductance responses (SCR)s, heart rate, respiration), neuropsychological and personality tests, genomics and demographics: The Brain Resource International Database. It comprises data from over 2,000 “normative” subjects and a growing number of patients with neurological and psychiatric illnesses, acquired from over 50 laboratories (in the USA, United Kingdom, Holland, South Africa, Israel and Australia), all with identical equipment and experimental procedures. Three primary goals of this database are to quantify individual differences in normative brain function, to compare an individual's performance to their database peers, and to provide a robust normative framework for clinical assessment and treatment prediction. We present three example demonstrations in relation to these goals. First, we show how consistent age differences may be quantified when large subject numbers are available, using EEG and ERP data from nearly 2,000 stringently screened normative subjects. Second, the use of a normalization technique provides a means to compare clinical subjects (50 ADHD subjects in this study) to the normative database with the effects of age and gender taken into account. Third, we show how a profile of EEG/ERP and autonomic measures potentially provides a means to predict treatment response in ADHD subjects. The example data consists of EEG under eyes open and eyes closed and ERP data for auditory oddball, working memory and Go-NoGo paradigms. Autonomic measures of skin conductance (tonic skin conductance level, SCL, and phasic skin conductance responses, SCRs) were acquired simultaneously with central EEG/ERP measures. The findings show that the power of large samples, tested using standardized protocols, allows for the quantification of individual differences that can subsequently be used to control such variation and to enhance the sensitivity and specificity of comparisons between normative and clinical groups. In terms of broader significance, the combination of size and multidimensional measures tapping the brain's core cognitive competencies, may provide a normative and evidence-based framework for individually-based assessments in “Personalized Medicine.”


Author(s):  
Jessica Gallina ◽  
Mattia Pietrelli ◽  
Marco Zanon ◽  
Caterina Bertini

AbstractA variety of evidence supports the dominance of the right hemisphere in perceptual and visuo-spatial processing. Although growing evidence shows a strong link between alpha oscillations and the functionality of the visual system, asymmetries in alpha oscillatory patterns still need to be investigated. Converging findings indicate that the typical alpha desynchronization occurring in the transition from the eyes-closed to the eyes-open resting state might represent an index of reactivity of the visual system. Thus, investigating hemispheric asymmetries in EEG reactivity at the opening of the eyes in brain-lesioned patients may shed light on the contribution of specific cortical sites and each hemisphere in regulating the oscillatory patterns reflecting the functionality of the visual system. To this aim, EEG signal was recorded during eyes-closed and eyes-open resting state in hemianopic patients with posterior left or right lesions, patients without hemianopia with anterior lesions and healthy controls. Hemianopics with both left and right posterior lesions showed a reduced alpha reactivity at the opening of the eyes, suggesting that posterior cortices have a pivotal role in the functionality of alpha oscillations. However, right-lesioned hemianopics showed a greater dysfunction, demonstrated by a reactivity reduction more distributed over the scalp, compared to left-lesioned hemianopics. Moreover, they also revealed impaired reactivity in the theta range. This favors the hypothesis of a specialized role of the right hemisphere in orchestrating oscillatory patterns, both coordinating widespread alpha oscillatory activity and organizing focal processing in the theta range, to support visual processing at the opening of the eyes.


2019 ◽  
Author(s):  
Jorne Laton ◽  
Jeroen Van Schependom ◽  
Jeroen Decoster ◽  
Tim Moons ◽  
Marc De Hert ◽  
...  

AbstractIntroductionBrain connectivity is disturbed in schizophrenia, both during resting state and during active tasks. Schizophrenia is characterised by a corpus callosum pathology and an inability to suppress overstimulation, both of which relate to this disturbed connectivity. We wanted to verify whether network analysis on EEG sensor level can reveal the corpus callosum pathology in schizophrenia.MethodsWe measured 62-channel EEG on 46 schizophrenia patients and 43 healthy controls during eyes-closed and eyes-open resting-state, mismatch negativity and visual and auditory oddball. We assessed connectivity through correlation, coherence and directed transfer function (DTF) in the delta, theta, alpha, low- and high beta bands.ResultsThe coherence and the DTF picked up a consistent pattern of reduced interhemispheric and enhanced intrahemispheric connectivity strength in schizophrenia in the alpha and beta band. This disturbance pattern appeared across all paradigms in the parietal and the occipital region and was generally more pronounced in the right hemisphere.ConclusionsThis is the first study to use multiple similarity measures and different tasks to confirm disturbed brain connectivity on EEG sensor level. We hypothesise that the interhemispheric reductions reflect transcallosal disconnection, while the intrahemispheric increases indicate the inability to suppress the response to stimuli.


2020 ◽  
Vol 16 ◽  
Author(s):  
Neerja Thukral ◽  
Jaspreet Kaur ◽  
Manoj Malik

Background: Peripheral neuropathy is a major and chronic complication of diabetes mellitus affecting more than 50% of patients suffering from diabetes. There is involvement of both large and small diameter nerve fibres leading to altered somatosensory and motor sensations, thereby causing impaired balance and postural instability. Objective: To assess the effects of exercises on posture and balance in patients suffering from diabetes mellitus. Method: Mean changes in Timed Up and Go test(TUGT), Berg Balance Scale and Postural Sway with eyes open and eyes closed on Balance System were primary outcome measures. RevMan 5.3 software was used for the meta-analyses. Eighteen randomized controlled trials met the selection criteria and were included in the study. All the studies ranked high on PEDro Rating scale. Risk of bias was assessed by Cochrane collaboration tool of risk of bias. Included studies had low risk of bias. Sixteen RCT’s were included for the meta-analysis. Result: Results of meta-analysis showed that there was statistically significant improvement in TUGT with p≤ 0.05 and substantial heterogeneity (I 2 = 84%, p < 0.00001) in experimental group as compared to control group. There was statistically significant difference in Berg Balance Scale scores and heterogeneity of I 2 = 62%, p < 0.00001 and significant changes in postural stability (eyes open heterogeneity of I 2 = 100%, p =0.01 and eyes closed, heteogeneity I 2 = 0%, p =0.01). Sensitivity analysis causes change in heterogeneity. Conclusion: It can be concluded that various exercises like balance training, core stability, Tai-Chi, proprioceptive training etc. have a significant effect in improving balance and posture in diabetic neuropathy.


Author(s):  
Agnieszka D. Jastrzębska

This experiment examined changes in body sway after Wingate test (WAnT) in 19 adolescents practicing alpine skiing, subjected to the same type of training load for 4–5 years (10 girls and nine boys). The postural examinations were performed with eyes open (EO), eyes closed (EC), and sway reverenced vision (SRV) in the medial-lateral (ML) and anterior-posterior (AP) planes. The displacement of center of foot pressure (CoP), range of sway (RS), mean sway velocity (MV), way length, and surface area were measured in bipedal upright stance before and after the WAnT to assess the influence of fatigue on postural balance. There were no significant differences in WAnT parameters between girls and boys. Relative peak power (RPP), relative total work (RWtot) were (girls vs. boys) 8.89 ± 0.70 vs. 9.57 ± 1.22 W/kg, p < 0.05 and 227.91 ± 14.98 vs. 243.22 ± 30.24 W/kg, p < 0.05 respectively. The fatigue index (FI) was also on similar level in both genders; however, blood lactate concentration (BLa) was significantly higher in boys (10.35 ± 1.16 mM) than in girls (8.67 ± 1.35 mM) p = 0.007. In the EO examination, statistically significant differences between resting and fatigue conditions in the whole group and after the division into girls and boys were found. In fatigue conditions, significant gender differences were noted for measurements in the ML plane (sway path and RS) and RS in the AP plane. Comparison of the three conditions shows differences between EO vs. EC and SRV in AP plane measured parameters, and for RS in ML plane in rest condition in girls. The strong correlations between FI and CoP parameters mainly in ML plane in the whole group for all examination conditions were noted. By genders, mainly RS in ML plane strongly correlates with FI (r > 0.7). No correlation was found between BLa and CoP parameters (p > 0.06). The presented results indicate that subjecting adolescents of both genders to the same training may reduce gender differences in the postural balance ability at rest but not in fatigue conditions and that girls are significantly superior in postural balance in the ML plane than boys. It was also shown that too little or too much information may be destructive to postural balance in young adolescents.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Kelly L. Bennett ◽  
William Owen McMillan ◽  
Jose R. Loaiza

Ae. (Stegomyia) aegypti L. and Aedes (Stegomyia) albopictus Skuse mosquitoes are major arboviral disease vectors in human populations. Interspecific competition between these species shapes their distribution and hence the incidence of disease. While Ae. albopictus is considered a superior competitor for ecological resources and displaces its contender Ae. aegypti from most environments, the latter is able to persist with Ae. albopictus under particular environmental conditions, suggesting species occurrence cannot be explained by resource competition alone. The environment is an important determinant of species displacement or coexistence, although the factors underpinning its role remain little understood. In addition, it has been found that Ae. aegypti can be adapted to the environment across a local scale. Based on data from the Neotropical country of Panama, we present the hypothesis that local adaptation to the environment is critical in determining the persistence of Ae. aegypti in the face of its direct competitor Ae. albopictus. We show that although Ae. albopictus has displaced Ae. aegypti in some areas of Panama, both species coexist across many areas, including regions where Ae. aegypti appear to be locally adapted to dry climate conditions and less vegetated environments. Based on these findings, we describe a reciprocal transplant experiment to test our hypothesis, with findings expected to provide fundamental insights into the role of environmental variation in shaping the landscape of emerging arboviral disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 412
Author(s):  
Han-Ping Huang ◽  
Chang Francis Hsu ◽  
Yi-Chih Mao ◽  
Long Hsu ◽  
Sien Chi

Gait stability has been measured by using many entropy-based methods. However, the relation between the entropy values and gait stability is worth further investigation. A research reported that average entropy (AE), a measure of disorder, could measure the static standing postural stability better than multiscale entropy and entropy of entropy (EoE), two measures of complexity. This study tested the validity of AE in gait stability measurement from the viewpoint of the disorder. For comparison, another five disorders, the EoE, and two traditional metrics methods were, respectively, used to measure the degrees of disorder and complexity of 10 step interval (SPI) and 79 stride interval (SI) time series, individually. As a result, every one of the 10 participants exhibited a relatively high AE value of the SPI when walking with eyes closed and a relatively low AE value when walking with eyes open. Most of the AE values of the SI of the 53 diseased subjects were greater than those of the 26 healthy subjects. A maximal overall accuracy of AE in differentiating the healthy from the diseased was 91.1%. Similar features also exists on those 5 disorder measurements but do not exist on the EoE values. Nevertheless, the EoE versus AE plot of the SI also exhibits an inverted U relation, consistent with the hypothesis for physiologic signals.


Sign in / Sign up

Export Citation Format

Share Document