scholarly journals Anti-SARS-CoV-2 cellular immunity in 571 vaccinees assessed using an interferon-γ release assay

Author(s):  
Yoshifumi Uwamino ◽  
Masatoshi Wakui ◽  
Yoko Yatabe ◽  
Terumichi Nakagawa ◽  
Akiko Sakai ◽  
...  

Generation of antigen-specific memory T cells has been analyzed only for few coronavirus disease 2019 (COVID-19) vaccinees, whereas antibody titers have been serologically measured for a large number of individuals. Here, we assessed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular immune response in a large cohort using interferon (IFN)-γ release assays (IGRAs) based on short-term whole blood culture. The study included 571 individuals who received the viral spike (S) protein-expressing BNT162b2 mRNA SARS-CoV-2 vaccine. Serum IgG titers against the receptor-binding domain (RBD) of S protein were measured. Samples of 28 vaccinees were subjected to flow cytometry analysis of T cells derived from short-term whole blood culture. IFN-γ production triggered by S antigens was observed in most individuals 8 weeks after receiving the second dose of the vaccine, indicating acquisition of T cell memory responses. The frequencies of activated T cell subsets were strongly correlated with IFN-γ levels, supporting the usability of our approach. S antigen-stimulated IFN-γ levels were weakly correlated with anti-RBD IgG titers and associated with pre-vaccination infection and adverse reactions after the second dose. Our approach revealed cellular immunity acquired after COVID-19 vaccination, providing insights regarding the effects and adverse reactions of vaccination.

2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 837-845 ◽  
Author(s):  
Guangming Gong ◽  
Lingyun Shao ◽  
Yunqi Wang ◽  
Crystal Y. Chen ◽  
Dan Huang ◽  
...  

Abstract Although Foxp3+ T regulatory cells (Tregs) are well documented for their ability to suppress various immune cells, T-cell subsets capable of counteracting Tregs have not been demonstrated. Here, we assessed phosphoantigen-activated Vγ2Vδ2 T cells for the ability to interplay with Tregs in the context of mycobacterial infection. A short-term IL-2 treatment regimen induced marked expansion of CD4+CD25+Foxp3+ T cells and subsequent suppression of mycobacterium-driven increases in numbers of Vγ2Vδ2 T cells. Surprisingly, activation of Vγ2Vδ2 T cells by adding phosphoantigen Picostim to the IL-2 treatment regimen down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Consistently, in vitro activation of Vγ2Vδ2 T cells by phosphoantigen plus IL-2 down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Interestingly, anti–IFN-γ–neutralizing antibody, not anti–TGF-β or anti–IL-4, reduced the ability of activated Vγ2Vδ2 T cells to down-regulate Tregs, suggesting that autocrine IFN-γ and its network contributed to Vγ2Vδ2 T cells' antagonizing effects. Furthermore, activation of Vγ2Vδ2 T cells by Picostim plus IL-2 treatment appeared to reverse Treg-driven suppression of immune responses of phosphoantigen-specific IFNγ+ or perforin+ Vγ2Vδ2 T cells and PPD-specific IFNγ+αβ T cells. Thus, phos-phoantigen activation of Vγ2Vδ2 T cells antagonizes IL-2–induced expansion of Tregs and subsequent suppression of Ag-specific antimicrobial T-cell responses in mycobacterial infection.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


2015 ◽  
Vol 83 (5) ◽  
pp. 2118-2126 ◽  
Author(s):  
Truc Hoang ◽  
Else Marie Agger ◽  
Joseph P. Cassidy ◽  
Jan P. Christensen ◽  
Peter Andersen

Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse ofMycobacterium tuberculosis, as well as increased pathology, in bothMycobacterium bovisBCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ+TNF-α+and IFN-γ+cells). PEM duringM. tuberculosisinfection completely blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all cytokine-producing CD4 T cell subsets, with the exception of CD4 T cells positive for TNF-α only. Importantly, this impairment was reversible and resupplementation of protein during infection rescued both the vaccine-promoted T cell response and the protective effect of the vaccine againstM. tuberculosisinfection.


2011 ◽  
Vol 106 (11) ◽  
pp. 779-786 ◽  
Author(s):  
Daniel Ketelhuth ◽  
Göran Hansson

SummaryAtherosclerosis is a chronic inflammatory disease. Atherosclerotic plaques contain abundant immune cells that can dictate and effect inflammatory responses. Among them, T cells are present during all stages of the disease suggesting that they are essential in the initiation as well as the progression of plaque. Experimental as well as clinical research has demonstrated different T cell subsets, i.e. CD4+ Th1, Th2, Th17, and Treg as well as CD8+ and NKT cells in the plaque. Moreover, candidate antigens inducing T cell responses have been identified. Knowledge about the pathological role of these cells in atherogenesis may lead to development of new therapies. This review provides an overview of the research field of cellular immunity in atherosclerosis. It emphasises the events and findings involving antigen specific T cells, in particular low-density lipoprotein-specific T cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 904-904
Author(s):  
Rebecca Austin ◽  
Megan Bywater ◽  
Jasmin Straube ◽  
Leanne T Cooper ◽  
Madeleine Headlam ◽  
...  

Abstract Immunotherapy has revolutionised therapeutic approaches to fight cancer and, in certain diseases dramatically improves survival. Clinical responses to immune checkpoint blockade have in part been attributed to high mutational burden of tumours such as melanoma. High-risk acute myeloid leukaemia (AML) is defined by molecular and cytogenetic factors. AML has a low prevalence of somatic mutations and is predicted to have low immunogenicity. We aimed to determine how AMLs driven from different classes of oncogenes interact with endogenous anti-leukemic immune responses. Methods and Results We generated three oncogenically distinct models of AML: BCR-ABL+NUP98-HOXA9 (BA/NH9), MLL-AF9 (MA9), and AML1-ETO+NRASG12D (AE/NRAS), using retroviral transduced bone marrow transplanted into immune-competent, non-irradiated C57BL/6J (B6) mice or immune-deficient Rag2-/-γc-/- mice. Immunologic control of AML was dependent on the driver oncogene, as AE/NRAS AML was effectively controlled in B6, but not Rag2-/-γc-/-recipients, whereas survival of BA/NH9 AML recipients was similar between B6 and Rag2-/-γc-/-. MA9 AML had an intermediate phenotype (Figure 1A-C). To examine the mechanisms underlying immune escape in AE/NRAS, AML from immune-deficient or immune-competent hosts, was passaged through immune-competent hosts. Prior exposure to an intact immune system dramatically accelerated disease progression of AE/NRAS AML in subsequent B6 recipients, but this was not seen in passage through Rag2-/-γc-/- recipients. This demonstrates specific, functional immunoediting of AML resulting in evasion of immune control. Despite evidence of disease attenuation in immune competent hosts, functional immunoediting was not observed in MA9 AML. Antibody-mediated immune cell depletion experiments demonstrated that natural killer (NK) cells and T cells both contribute to the control AE/NRAS AML, whereas MA9 immune control was dependent on NK cells. As immunoediting was only seen in AE/NRAS model, this suggests that functional immunoediting in this model is primarily mediated by T cells. To characterise the mechanisms regulating immunoediting, we integrated proteomic and transcriptional analysis of immunoedited and non-immunoedited AE/NRAS AML. There was strong correlation between increased protein expression and transcriptional regulation. There was distinct regulation of inflammatory pathways between immunoedited and non-immunoedited AML. Immunoedited AE/NRAS cells showed increased IFN-γ-dependent response signatures, consistent with direct targeting of the leukemic cells by the immune system. Transcriptional analysis also showed modulation of expression of immune checkpoint molecules including upregulation of suppressive molecules Tim-3 and CD39 and downregulation of activating ligand CD137L. These findings were confirmed by cell-surface flow cytometry. Immunoedited AE/NRAS downregulated RAS signalling transcriptionally, with coordinate activation of MYC targets. In the murine AE/NRAS model, CD4+ and CD8+ T effector memory (TEM) cells (CD44+ CD62L-) demonstrated increased PD-1 expression compared to naïve mice. In addition, mice with high disease burden also had increased frequency of T cells co-expressing exhaustion markers PD-1, Tim-3 and LAG-3, consistent with suppression of the anti-leukemic effector immune response. To understand if these findings were relevant to AML in the clinic, we obtained single cell RNA-sequencing data from the CD45+ CD34- non-leukemic fraction of bone marrow in a patient with AML1-ETO AML at diagnosis compared to that in normal marrow. Single cell type classification and clustering using tSNE demonstrated remodelling of the immune microenvironment in AML with loss of NK cells, pre-B cells and skewing of T cell subsets. There was depletion of CD8+ TEM cells and greater proportions of CD4+ and CD8+ TEM cells expressing activation and exhaustion markers (IFN-γ, PD-1, LAG-3, TIM-3). Conclusions These data demonstrate that immune responses in AML are oncogene-specific and provide evidence that AE/NRAS AML cells undergo immunoediting over time in the presence of a competent immune microenvironment. Since AML is associated with alterations in T cell subsets, and changes in T cell activation and exhaustion states, these findings may inform translational strategies to use immunotherapies for patients with AML. Disclosures Smyth: Bristol Myers Squibb: Other: Research agreement; Tizona Therapeutics: Research Funding. Lane:Janssen: Consultancy, Research Funding; Celgene: Consultancy; Novartis: Consultancy.


2018 ◽  
Author(s):  
Jinyun Yuan ◽  
Janice Tenant ◽  
Thomas Pacatte ◽  
Christopher Eickhoff ◽  
Azra Blazevic ◽  
...  

AbstractFailure of the most recent tuberculosis (TB) vaccine trial to boost BCG mediated anti-TB immunity despite highly durable Th1-specific central (TCM) and effector (TEM) memory cell responses, highlights the importance of identifying optimal T cell targets for protective vaccines. Here we describe a novel, Mycobacterium tuberculosis (Mtb)-specific IFN-γ+CD4+ T cell population expressing surface markers characteristic of naïve T cells (TNLM), that were induced in both human (CD45RA+CCR7+CD27+CD95-) and murine (CD62L+CD44-Sca-1+CD122-) systems in response to mycobacteria. In BCG vaccinated subjects and those with latent TB infection, TNLM cells, compared to bonafide naïve CD4+ T cells were identified by absence of CD95 expression and had increased expression CCR7 and CD27, the activation markers T-bet, CD69 and PD-1 and the survival marker CD74. Increased TNLM frequencies were noted in the lung and spleen of wild type C57BL6 mice at 2 weeks after infection with Mtb, and progressively decreased at later time points, a pattern not seen in TNF-α+CD4+ T cells expressing naïve cell surface markers. Importantly, adoptive transfer of highly purified TNLM from vaccinated ESAT-61-20-specific TCR transgenic mice conferred superior protection against Mtb infection in Rag-/- mice when compared with total meory populations (central and effector memory cells). Thus, TNLM cells may represent a memory T cell population that if optimally targeted may significantly improve future TB vaccine responses.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5375
Author(s):  
Catherine S. Forconi ◽  
David H. Mulama ◽  
Priya Saikumar Lakshmi ◽  
Joslyn Foley ◽  
Juliana A. Otieno ◽  
...  

Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis.


2001 ◽  
Vol 75 (5) ◽  
pp. 2107-2118 ◽  
Author(s):  
Ting Liu ◽  
Thomas J. Chambers

ABSTRACT Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-γ)-deficient (IFN-γ knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-γ, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-γ, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.


Sign in / Sign up

Export Citation Format

Share Document