scholarly journals SpiceRx: an integrated resource for the health impacts of culinary spices and herbs

2018 ◽  
Author(s):  
Rakhi Nk ◽  
Rudraksh Tuwani ◽  
Neelansh Garg ◽  
Jagriti Mukherjee ◽  
Ganesh Bagler

AbstractSpices and herbs are key dietary ingredients used in cuisines across the world. They have been reported to be of medicinal value for a wide variety of diseases through a large body of biomedical investigations. Bioactive phytochemicals in these plant products form the basis of their therapeutic potential as well as adverse effects. A systematic compilation of empirical data involving these aspects of culinary spices and herbs could help unravel molecular mechanisms underlying their effects on health.SpiceRx provides a platform for exploring the health impact of spices and herbs used in food preparations through a structured database of tripartite relationships with their phytochemicals and disease associations. Starting with an extensive dictionary of culinary spices and herbs, their disease associations were text mined from MEDLINE, the largest database of biomedical abstracts, assisted with manual curation. This information was further combined with spice-phytochemical and phytochemical-disease associations. SpiceRx is an integrated repertoire of evidence-based knowledge pertaining to the health impacts of culinary spices and herbs, and facilitates their disease-specific culinary recommendations as well as exploration of molecular mechanisms underlying their health effects.Availability and ImplementationSpiceRx is available at http://cosylab.iiitd.edu.in/spicerx and supports all modern browsers. SpiceRx is implemented with Python web development framework Django and relational database PostgreSQL; the front-end was built using HTML, CSS, JavaScript, AJAX, jQuery, JSME Molecular Editor, Bootstrap, Jmol, DataTables and Google Charts.Supplementary informationSupplementary data are available at Bioinformatics online.

2019 ◽  
Vol 53 (2) ◽  
pp. 148-158 ◽  
Author(s):  
Tomaz Makovec

AbstractBackgroundPlatinum-based anticancer drugs are widely used in the chemotherapy of human neoplasms. The major obstacle for the clinical use of this class of drugs is the development of resistance and toxicity. It is therefore very important to understand the chemical properties, transport and metabolic pathways and mechanism of actions of these compounds. There is a large body of evidence that therapeutic and toxic effects of platinum drugs on cells are not only a consequence of covalent adducts formation between platinum complexes and DNA but also with RNA and many proteins. These processes determine molecular mechanisms that underlie resistance to platinum drugs as well as their toxicity. Increased expression levels of various transporters and increased repair of platinum-DNA adducts are both considered as the most significant processes in the development of drug resistance. Functional genomics has an increasing role in predicting patients’ responses to platinum drugs. Genetic polymorphisms affecting these processes may play an important role and constitute the basis for individualized approach to cancer therapy. Similar processes may also influence therapeutic potential of nonplatinum metal compounds with anticancer activity.ConclusionsCisplatin is the most frequently used platinum based chemotherapeutic agent that is clinically proven to combat different types of cancers and sarcomas.


2008 ◽  
Vol 116 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Jichun Yang ◽  
Dongjuan Zhang ◽  
Jing Li ◽  
Xiaoyan Zhang ◽  
Fenling Fan ◽  
...  

DN (diabetic nephropathy) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of ESRD (end-stage renal disease), accounting for millions of deaths worldwide. TZDs (thiazolidinediones) are synthetic ligands of PPARγ (peroxisome-proliferator-activated receptor γ), which is involved in many important physiological processes, including adipose differentiation, lipid and glucose metabolism, energy homoeostasis, cell proliferation, inflammation, reproduction and renoprotection. A large body of research over the past decade has revealed that, in addition to their insulin-sensitizing effects, TZDs play an important role in delaying and preventing the progression of chronic kidney disease in Type 2 diabetes. Although PPARγ activation by TZDs is in general considered beneficial for the amelioration of diabetic renal complications in Type 2 diabetes, the underlying mechanism(s) remains only partially characterized. In this review, we summarize and discuss recent findings regarding the renoprotective effects of PPARγ in Type 2 diabetes and the potential underlying mechanisms.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3390-3397 ◽  
Author(s):  
Ryosuke Ogawa ◽  
Michael B. Streiff ◽  
Artem Bugayenko ◽  
Gregory J. Kato

Abstract Glucocorticoids are integral to successful treatment of childhood acute lymphoblastic leukemia (ALL) and other lymphoid malignancies. A large body of data indicates that in various model systems, elevation of cyclic adenosine monophosphate (cAMP) can potentiate glucocorticoid response, although this has not been well evaluated as a potential leukemia treatment. Although cAMP analogs have been studied, little data exist regarding the potential toxicity to leukemia cells of pharmacologic elevation of cAMP levels in leukemic blasts. Using MTT assays of cell proliferation on CEM ALL cells, we found that aminophylline and other nonspecific phosphodiesterase (PDE) inhibitors suppress cell growth. This effect is replicated by the PDE4-specific PDE inhibitor rolipram, but not by specific inhibitors of the PDE1 or PDE3 classes. We found that PDE inhibitors cause increased dexamethasone sensitivity and a synergistic effect with the adenylyl cyclase activator forskolin. We observed several important cellular characteristics associated with this treatment, including elevation of cAMP, induction of p53 and p21WAF1/CIP1proteins, G1 and G2/M cell cycle arrest, and increased apoptosis. Sensitivity to forskolin and rolipram is shared by at least 2 pediatric ALL cell lines, CEM and Reh cells. Some cell lines derived from adult-type lymphoid malignancies also show sensitivity to this treatment. These findings suggest that PDE inhibitors have therapeutic potential in human ALL and characterize the molecular mechanisms that may be involved in this response.


2019 ◽  
Vol 29 (6) ◽  
pp. 521-528
Author(s):  
Lingli Huang ◽  
Lingwei Huang ◽  
Ziwei Li ◽  
Qing Wei

2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2019 ◽  
Vol 16 (4) ◽  
pp. 330-339 ◽  
Author(s):  
Ruchi Sharma ◽  
Rekha Rao ◽  
Sunil Kumar ◽  
Sheefali Mahant ◽  
Sarita Khatkar

Mosquito-borne diseases such as malaria, filariasis, chikunguniya, yellow fever, dengue and Japanese encephalitis are the major cause of remarkable morbidity and mortality in livestock and humans worldwide. Since ancient times, aromatic plants are used for their medicinal value. Essential oils derived from these plants may be used as effective alternatives/adjuvants in pharmaceuticals, biomedical, cosmetic, food, veterinary and agriculture applications. These oils have also gained popularity and interest for prevention and treatment of various disorders. However, several reports on adverse effects including skin eruption, contact artricaria or toxic encephalopathy in children are available for synthetic repellent in the literature. Thus, natural insect repellents like essential oils have been explored recently as an alternative. One such essential oil studied widely, is citronella oil, extracted mainly from Cymbopogon nardus. This essential oil has exhibited good efficacy against mosquitoes. It is a mixture of components including citronellal, citronellol, geraniol as major constituents contributing to various activities (antimicrobial, anthelmintic, antioxidant, anticonvulsant antitrypanosomal and wound healing), besides mosquito repellent action. Citronella essential oil is registered in US EPA (Environmental protection agency) as insect repellent due to its high efficacy, low toxicity and customer satisfaction. However, poor stability in the presence of air and high temperature limits its practical applications. Since specific knowledge on properties and chemical composition of oil is fundamental for its effective application, the present review compiles and discusses biological properties of citronella oil. It also sheds light on various formulations and applications of this essential oil.


2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sandra Jumbe ◽  
Adrienne Milner ◽  
Megan Clinch ◽  
Jonathan Kennedy ◽  
Richard J. Pinder ◽  
...  

Abstract Background Over recent years there have been several major terror attacks in cities across Europe. These attacks result in deaths, physical injuries, and pose long-term threats to mental health and wellbeing of large populations. Although psychologists have completed important work on mental health responses to disaster exposure including terrorist attacks, the mental health impacts of such attacks have been comparatively less examined in academic literature than the acute health response to physical injuries. This paper reflects on Southwark Council’s pioneering public mental health response to the June 2017 terror attack at London Bridge and Borough Market. It aims to explore perceptions of the mental health impact of the incident by those living and working in the borough. Methods A rapid qualitative evaluation informed by the logic underpinning Southwark Council’s response was conducted. Seven formative interviews were undertaken with individuals involved in the response planning and/or delivery, enabling the evaluation team to establish the response’s theoretical basis. Subsequently, nineteen semi-structured interviews with consenting Council employees, residents, business owners, and workers from the Borough were conducted to understand perceived mental health impacts of the attack and the success of the Council response. Thematic analysis of transcribed interviews was undertaken to evaluate the extent to which the response was implemented successfully. Results Participants reported feeling the attack had a wide-reaching negative impact on the mental health of residents, those working in the borough and visitors who witnessed the attack. Delivering the response was a challenge and response visibility within the community was limited. Participants suggested a comprehensive systematic approach to health needs assessment informed by knowledge and relationships of key Council workers and community stakeholders is imperative when responding to terrorist incidents. Improved communication and working relationships between statutory organisations and community stakeholders would ensure community groups are better supported. Prioritising mental health needs of terror attack responders to mitigate persisting negative impacts was highlighted. Conclusions This article highlights a potential public health approach and need for developing robust practical guidance in the aftermath of terror attacks. This approach has already influenced the response to the Christchurch mosque shooting in 2019.


2021 ◽  
pp. 1-8
Author(s):  
Mahmood Tavakkoli ◽  
Saeed Aali ◽  
Borzoo Khaledifar ◽  
Gordon A. Ferns ◽  
Majid Khazaei ◽  
...  

<b><i>Background:</i></b> Post-surgical adhesion bands (PSABs) are a common complication after abdominal or pelvic surgeries for different reasons like cancer treatment. Despite improvements in surgical techniques and the administration of drugs or the use of physical barriers, there has only been limited improvement in the frequency of postoperative adhesions. Complications of PSAB are pain, infertility, intestinal obstruction, and increased mortality. The most important molecular mechanisms for the development of PSAB are inflammatory response, oxidative stress, and overexpression of pro-fibrotic molecules such as transforming growth factor β. However, questions remain about the pathogenesis of this problem, for example, the causes for individual differences or why certain tissue sites are more prone to post-surgical adhesions. <b><i>Summary:</i></b> Addressing the pathological causes of PSAB, the potential role of local angiotensin II/angiotensin II type 1 receptors (AngII/AT1R), may help to prevent this problem. <b><i>Key Message:</i></b> The objective of this article was to explore the role of the AngII/AT1R axis potential to induce PSAB and the therapeutic potential of angiotensin receptor blockers in the prevention and treatment of PSAB.


Sign in / Sign up

Export Citation Format

Share Document