scholarly journals Tolerogenic transcriptome landscape in CD8+ T lymphocytes after exposure to erythrocyte-targeted antigens

2018 ◽  
Author(s):  
Alizée J. Grimm ◽  
Cédric Gobet ◽  
Giacomo Diaceri ◽  
Xavier Quaglia-Thermes ◽  
Jeffrey A. Hubbell

AbstractOur group has recently shown induction of antigen-specific T cell tolerance through targeting of the antigen to erythrocytes in situ. The tolerogenic state is characterized by initial proliferation of antigen-specific T cells and subsequent acquisition of signatures associated with both deletional, anergic and regulatory T cell phenotypes. In this study we wished to further understand the molecular mechanisms behind induction of tolerance by erythrocyte-targeted antigens. RNA sequencing was performed to determine how gene expression response is regulated in tolerized ovalbumin-specific CD8+ T cells and which molecular pathways are activated after treatment with this technology. Treatment with erythrocyte-targeted antigens led to the upregulation of genes encoding several TCR co-inhibitory receptors such as CTLA4, PD1, LAG3, TIGIT and CD200R1, and lack of upregulation of cytotoxic and pro-inflammatory signaling molecule genes. Modulation in expression of the master transcription factors Egr2/NFatc1, Nur77 family and E2f1 was also observed, all known to be associated with the natural process of establishment of peripheral tolerance. Expression of these genes differed in response to treatment with soluble ovalbumin or SIINFEKL MHCI peptide, suggesting a specific mechanism of T cell modulation and tolerance induction in response to the erythrocyte-associated forms.

2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


1998 ◽  
Vol 187 (5) ◽  
pp. 763-774 ◽  
Author(s):  
Stephan Ehl ◽  
Joachim Hombach ◽  
Peter Aichele ◽  
Thomas Rülicke ◽  
Bernhard Odermatt ◽  
...  

We studied the impact of various infectious and proinflammatory agents on the induction of peripheral T cell tolerance. Adoptive transfer of CD8+ T cells from lymphocytic choriomeningitis virus (LCMV) T cell receptor transgenic mice into LCMV antigen transgenic mice expressing the LCMV glycoprotein epitope (gp) 33–41 under control of a major histocompatibility complex class I promoter led to efficient induction of peripheral tolerance after a period of transient activation. If, however, the recipient mice were challenged with viral or bacterial infections or proinflammatory agents (lipopolysaccharide or Poly:IC) early after cell transfer, tolerance induction was prevented and instead, CD8+ T cell activation leading to vigorous expansion and generation of cytolytic activity ensued. This became manifest in significant immunopathology mainly involving destruction of the splenic architecture and lysis of antigen-expressing lymphocyte and macrophage populations. Important parameters involved in the activation of host-reactive T cells by nonspecific infectious agents included the presence, localization, and quantity of the specific transgene-encoded self-antigen; in contrast, CD4+ T cells were not required. In mice surviving the acute phase, the transferred CD8+ T cells persisted at high levels in an anergic state; they were unable to generate cytolytic activity in vitro or to control LCMV infection in vivo. These results impinge on our understanding of the role of infectious agents in graft verus host reactions towards minor histocompatibility antigens.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4575-4585 ◽  
Author(s):  
Ian A. Parish ◽  
Sudha Rao ◽  
Gordon K. Smyth ◽  
Torsten Juelich ◽  
Gareth S. Denyer ◽  
...  

Abstract Peripheral tolerance induction is critical for the maintenance of self-tolerance and can be mediated by immunoregulatory T cells or by direct induction of T-cell anergy or deletion. Although the molecular processes underlying anergy have been extensively studied, little is known about the molecular basis for peripheral T-cell deletion. Here, we determined the gene expression signature of peripheral CD8+ T cells undergoing deletional tolerance, relative to those undergoing immunogenic priming or lymphopenia-induced proliferation. From these data, we report the first detailed molecular signature of cells undergoing deletion. Consistent with defective cytolysis, these cells exhibited deficiencies in granzyme up-regulation. Furthermore, they showed antigen-driven Bcl-2 down-regulation and early up-regulation of the proapoptotic protein Bim, consistent with the requirement of this BH3-only protein for peripheral T-cell deletion. Bim up-regulation was paralleled by defective interleukin-7 receptor α (IL-7Rα) chain reexpression, suggesting that Bim-dependent death may be triggered by loss of IL-7/IL-7R signaling. Finally, we observed parallels in molecular signatures between deletion and anergy, suggesting that these tolerance pathways may not be as molecularly distinct as previously surmised.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Inamo ◽  
Katsuya Suzuki ◽  
Masaru Takeshita ◽  
Yasushi Kondo ◽  
Yuumi Okuzono ◽  
...  

AbstractWhile numerous disease-modifying anti-rheumatic drugs (DMARDs) have brought about a dramatic paradigm shift in the management of rheumatoid arthritis (RA), unmet needs remain, such as the small proportion of patients who achieve drug-free status. The aim of this study was to explore key molecules for remission at the T cell level, which are known to be deeply involved in RA pathogenesis, and investigate the disease course of patients who achieved molecular remission (MR). We enrolled a total of 46 patients with RA and 10 healthy controls (HCs). We performed gene expression profiling and selected remission signature genes in CD4+ T cells and CD8+ T cells from patients with RA using machine learning methods. In addition, we investigated the benefits of achieving MR on disease control. We identified 9 and 23 genes that were associated with clinical remission in CD4+ and CD8+ T cells, respectively. Principal component analysis (PCA) demonstrated that their expression profiling was similar to those in HCs. For the remission signature genes in CD4+ T cells, the PCA result was reproduced using a validation cohort, indicating the robustness of these genes. A trend toward better disease control was observed during 12 months of follow-up in patients treated with tocilizumab in deep MR compared with those in non-deep MR, although the difference was not significant. The current study will promote our understanding of the molecular mechanisms necessary to achieve deep remission during the management of RA.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. eaay0524 ◽  
Author(s):  
Mohamed A. ElTanbouly ◽  
Yanding Zhao ◽  
Elizabeth Nowak ◽  
Jiannan Li ◽  
Evelien Schaafsma ◽  
...  

Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


2014 ◽  
Vol 211 (10) ◽  
pp. 1947-1955 ◽  
Author(s):  
Edwina Naik ◽  
Joshua D. Webster ◽  
Jason DeVoss ◽  
Jinfeng Liu ◽  
Rowena Suriben ◽  
...  

The T cell hyperproliferation and autoimmune phenotypes that manifest in mice lacking E3 ubiquitin ligases such as Cbl, ITCH, or GRAIL highlight the importance of ubiquitination for the maintenance of peripheral T cell tolerance. Less is known, however, about the deubiquitinating enzymes that regulate T cell proliferation and effector function. Here, we define a cell intrinsic role for the deubiquitinase Usp9X during proximal TCR signaling. Usp9X-deficient T cells were hypoproliferative, yet mice with T cell–specific Usp9x deletion had elevated numbers of antigen-experienced T cells and expanded PD-1 and OX40-expressing populations consistent with immune hyperactivity. Aged Usp9x KO mice developed lupus-like autoimmunity and lymphoproliferative disease, indicating that ubiquitin ligases and deubiquitinases maintain the delicate balance between effective immunity and self-tolerance.


1978 ◽  
Vol 8 (5) ◽  
pp. 360-370 ◽  
Author(s):  
A. Basten ◽  
J. F. A. P. Miller ◽  
R. Loblay ◽  
P. Johnson ◽  
Jennifer Gamble ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Song Chen ◽  
Ran Ding ◽  
Yan Zhou ◽  
Xian Zhang ◽  
Rui Zhu ◽  
...  

YCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungusPhoma herbarumYS4108, has great antitumor potentialviaenhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-)γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA. Receptor knock-out mice and fluorescence-activated cell sorting are used to analyze the YCP-binding receptor of T cells and DCs. RT-PCR is utilized to measure MAGE-A3 for analyzing the tumor-specific killing effect. In our study, we demonstrated YCP can provide the second signal for T cell activation, proliferation, and IFN-γproduction through binding to toll-like receptor- (TLR-) 2 and TLR-4. YCP could effectively promote IL-12 secretion and expression of markers (CD80, CD86, and MHC II)viaTLR-4 on DCs. Antigen-specific immunity against mouse melanoma cells was strengthened through the activation of T cells and the enhancement of capacity of DCs by YCP. The data supported that YCP can exhibit specific immunomodulatory capacity mediated by T cells and DCs.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A670-A670
Author(s):  
Jonathan Chen ◽  
Karin Pelka ◽  
Matan Hofree ◽  
Marios Giannakis ◽  
Genevieve Boland ◽  
...  

BackgroundImmune responses to cancer are highly variable, with DNA mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. Almost all tumors are infiltrated with immune cells, but the types of immune responses and their effects on tumor growth, metastasis and death, vary greatly between different cancers and individual tumors. Which of the numerous cell subsets in a tumor contribute to the response, how their interactions are regulated, and how they are spatially organized within tumors remains poorly understood.MethodsTo understand the rules governing these varied responses, we transcriptionally profiled 371,223 single cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd treatment-naive patients. We developed a systematic approach to discover cell types, their underlying gene programs, and cellular communities based on single cell RNA-seq (scRNAseq) profiles and applied it to study the distinguishing features of human MMRd and MMRp colorectal cancer. Cellular communities discovered from this analysis were spatially mapped in tissue sections using multiplex RNA in situ hybridization microscopy.ResultsTo understand the basis for differential immune responses in CRC, we first determined and compared the immune cell composition of MMRd and MMRp CRC and normal colon tissue, finding dramatic remodeling between tumor and normal tissue and between MMRd and MMRp tumors, particularly within the myeloid, T cell, and stromal compartments. Among the clusters enriched in MMRd tumors were activated CXCL13+ CD8 T cells. Importantly, gene program co-variation analysis revealed multicellular networks. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage, and an MMRd-enriched immune hub within the tumor, with activated IFNG+ and CXCL13+ T cells together with malignant and myeloid cells expressing T-cell-attracting chemokines (figure 1).ConclusionsOur study provides a rich dataset of cellular states, gene programs and their transformations in tumors across a relatively large cohort of patients with colorectal cancer. Our predictions of several multicellular hubs based on co-variation of gene expression programs, and subsequent spatial localization of two major immune-malignant hubs, organizes a large set of cell states and programs into a smaller number of coordinated networks of cells and processes. Understanding the molecular mechanisms underlying these hubs, and studying their temporal and spatial regulation upon treatment will be critical for advancing cancer therapy.Ethics ApprovalThis study was approved by the DF-HCC institutional review board (protocols 03-189 and 02-240).Abstract 641 Figure 1A coordinated network of CXCL13+ T cells with myeloid and malignant cells expressing ISGs. Image shows a portion of formalin-fixed paraffin-embedded tissue from an MMRd CRC specimen stained with multiplex RNA ISH / IF for PanCK-IF, CD3E-ISH, CXCL10/CXCL11-ISH, CXCL13-ISH, and IFNG-ISH. Note IFNG+ and CXCL13+ cells in proximity to cells expressing the chemokines CXCL10/CXCL11


Sign in / Sign up

Export Citation Format

Share Document