scholarly journals Early candidate biomarkers in urine of Walker-256 lung metastasis rat model

2018 ◽  
Author(s):  
Jing Wei ◽  
Na Ni ◽  
Linpei Zhang ◽  
Youhe Gao

AbstractCancer metastasis accounts for the majority of deaths by cancer. Detection of cancer metastasis at its early stage is important for the management and prediction of cancer progression. Urine, which is not regulated by homeostatic mechanisms, reflects systemic changes in the whole body and can potentially be used for the early detection of cancer metastasis. In this study, a lung metastasis of a Walker-256 rat model was established by tail-vein injection of Walker-256 cells. Urine samples were collected at days 2, 4, 6 and 9 after injection, and the urinary proteomes were profiled using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The urinary protein patterns changed significantly with the development of Walker-256 lung metastasis. On the fourth day, lung metastasis nodules appeared. On the sixth day, clinical symptoms started. On days 2, 4, 6 and 9, 11, 25, 34 and 44 differential proteins were identified in 7 lung metastatic rats by LC-MS/MS. Seventeen of these 62 differential proteins were identified on the second day, and 18 of them were identified on the fourth day. The differential urinary proteins changed significantly two days before lung metastasis nodules appeared. Differential urinary proteins differed in Walker-256 lung metastasis rat models and Walker-256 subcutaneous rat models. A total of 9 differential proteins (NHRF1, CLIC1, EZRI, AMPN, ACY1A, HSP7C, BTD, NID2, and CFAD) were identified in 7 lung metastatic rats at one or more common time points, and these 9 differential proteins were not identified in the subcutaneous rat model. Seven of these 9 differential proteins were associated with both breast cancer and lung cancer, eight of the nine were identified on the second day, and 8 of the nine can be identified on the fourth day; these early changes in urine were also identified with differential abundances at late stages of lung metastasis. Our results indicate that (1) the urine proteome changed significantly, even on the second day after tail-vein injection of Walker-256 cells and that (2) the urinary differential proteins were different in Walker-256 lung metastatic tumors and Walker-256 subcutaneous tumors. Our results provide the potential to detect early breast cancer lung metastasis, monitor its progression and differentiate it from the same cancer cells grown at other locations.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jing Wei ◽  
Na Ni ◽  
Wenshu Meng ◽  
Youhe Gao

Abstract Detection of cancer at its early stage is important for treatment. Urine, which is not regulated by homeostatic mechanisms, reflects early systemic changes throughout the whole body and can be used for the early detection of cancer. In this study, the Walker-256 tail-vein injection rat model was established to find whether the urine proteome could reflect early changes if tumor grown in lung. Urine samples from the control group (n = 7) and Walker-256 tail-vein injection group (n = 7) on days 2, 4, 6 and 9 were analyzed by label-free proteomic quantitative methods. On day 2, when lung tumor nodules did not appear, 62 differential proteins were identified. They were associated with epithelial cell differentiation, regulation of immune system processes and the classical complement activation pathway. On day 4, when lung tumor nodules appeared, 72 differential proteins were identified. They were associated with the innate immune response and positive regulation of phagocytosis. On day 6, when body weight began to decrease, 117 differential proteins were identified. On day 9, the identified 125 differential proteins were associated with the B cell receptor signaling pathway and the positive regulation of B cell activation. Our results indicate that (1) the urine proteome changed even on the second day after tail-vein injection of Walker-256 cells and that (2) compared to previous studies, the urine proteomes were different when the same cancer cells were grown in different organs.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3644
Author(s):  
Daeun You ◽  
Yisun Jeong ◽  
Sun Young Yoon ◽  
Sung A Kim ◽  
Eunji Lo ◽  
...  

Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15503-e15503
Author(s):  
Jun Lin ◽  
Ru Li ◽  
Yujie Huang

e15503 Background: Metastatic breast cancer is a pressing health concern worldwide. Various treatments have been developed but no significant long-term changes in overall survival are observed. Therefore, there is a demand to improve current therapies to treat this disease. Surgical resection of the primary tumors is essential in the treatment. However, accumulating evidence alludes to a role for volatile anesthetics which are used during the surgery in metastatic tumor development, but the mechanism remains largely unknown. We have shown anesthetics exert different effects on lung metastasis in mouse models of breast cancers. This study analyses the effect of general anesthetics in lung microenvironment associated with the increased metastases. Methods: Balb/c mice and NOD-SCID mice were orthotopically implanted with 4T1 cells and MDA-MB-231 cells respectively, in the mammary fat pad to generate primary tumors. Mice were subjected to the tested anesthetic during implantation and/or before and after surgery. Surgical dissection of primary tumor was performed under anesthesia with sevoflurane or an intravenous anesthetic propofol. Survival curve was constructed and analysed. Mice were euthanized to harvest tissues for histology and cell analysis. Results: As we previously reported, surgical dissection of primary tumor in mice under anesthesia with sevoflurane led to significantly more lung metastasis than with propofol in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. Sevoflurane was associated with increased IL6(Li, Huang, & Lin, 2020). Here we show that anesthesia with sevoflurane resulted in changes of stroma composition in the lung, which was reversed by IL6 pathway interruption. Conclusions: Those results contribute to our understanding of effects of sevoflurane on cancer metastasis and suggest a potential therapeutic approach to overcome the risk of general anesthesia. Li, R., Huang, Y., & Lin, J. (2020). Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat Commun, 11, 642.


2016 ◽  
Vol 5 (2) ◽  
pp. 47-54 ◽  
Author(s):  
Ashley N Reeb ◽  
Andrea Ziegler ◽  
Reigh-Yi Lin

Follicular thyroid cancer (FTC) is the second most common type of thyroid cancers. In order to develop more effective personalized therapies, it is necessary to thoroughly evaluate patient-derived cell lines in in vivo preclinical models before using them to test new, targeted therapies. This study evaluates the tumorigenic and metastatic potential of a panel of three human FTC cell lines (WRO, FTC-238, and TT1609-CO2) with defined genetic mutations in two in vivo murine models: an orthotopic thyroid cancer model to study tumor progression and a tail vein injection model to study metastasis. All cell lines developed tumors in the orthotopic model, with take rates of 100%. Notably, WRO-derived tumors grew two to four times faster than tumors arising from the FTC-238 and TT2609-CO2 cell lines. These results mirrored those of a tail vein injection model for lung metastasis: one hundred percent of mice injected with WRO cells in the tail vein exhibited aggressive growth of bilateral lung metastases within 35 days. In contrast, tail vein injection of FTC-238 or TT2609-CO2 cells did not result in lung metastasis. Together, our work demonstrates that these human FTC cell lines display highly varied tumorigenic and metastatic potential in vivo with WRO being the most aggressive cell line in both orthotopic and lung metastasis models. This information will be valuable when selecting cell lines for preclinical drug testing.


2008 ◽  
Vol 28 (19) ◽  
pp. 5937-5950 ◽  
Author(s):  
Li Qin ◽  
Lan Liao ◽  
Aisling Redmond ◽  
Leonie Young ◽  
Yuhui Yuan ◽  
...  

ABSTRACT Amplified-in-breast cancer 1 (AIB1) is an overexpressed transcriptional coactivator in breast cancer. Although overproduced AIB1 is oncogenic, its role and underlying mechanisms in metastasis remain unclear. Here, mammary tumorigenesis and lung metastasis were investigated in wild-type (WT) and AIB1−/− mice harboring the mouse mammary tumor virus-polyomavirus middle T (PyMT) transgene. All WT/PyMT mice developed massive lung metastasis, but AIB1−/−/PyMT mice with comparable mammary tumors had significantly less lung metastasis. The recipient mice with transplanted AIB1−/−/PyMT tumors also had much less lung metastasis than the recipient mice with transplanted WT/PyMT tumors. WT/PyMT tumor cells expressed mesenchymal markers such as vimentin and N-cadherin, migrated and invaded rapidly, and formed disorganized cellular masses in three-dimensional cultures. In contrast, AIB1−/−/PyMT tumor cells maintained epithelial markers such as E-cadherin and ZO-1, migrated and invaded slowly, and still formed polarized acinar structures in three-dimensional cultures. Molecular analyses revealed that AIB1 served as a PEA3 coactivator and formed complexes with PEA3 on matrix metalloproteinase 2 (MMP2) and MMP9 promoters to enhance their expression in both mouse and human breast cancer cells. In 560 human breast tumors, AIB1 expression was found to be positively associated with PEA3, MMP2, and MMP9. These findings suggest a new alternative strategy for controlling the deleterious roles of these MMPs in breast cancer by inhibiting their upstream coregulator AIB1.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 217 ◽  
Author(s):  
Eileen Shiuan ◽  
Ashwin Inala ◽  
Shan Wang ◽  
Wenqiang Song ◽  
Victoria Youngblood ◽  
...  

Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type (Efna1+/+), heterozygous (Efna1+/-), or knockout (Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8462
Author(s):  
Yameng Zhang ◽  
Yufei Gao ◽  
Youhe Gao

Background Urine, as a potential biomarker source among body fluids, can accumulate many early changes in the body due to the lack of mechanisms to maintain a homeostatic state. This study aims to detect early changes in the urinary proteome in a rat liver tumour model. Methods The tumour model was established with the Walker-256 carcinosarcoma cell line (W256). Urinary proteins at days 3, 5, 7 and 11 were profiled by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Compared with controls, differential proteins were selected. Associations of differential proteins with cancer were retrieved. Results At days 3, 5, 7 and 11, five, fifteen, eleven and twelve differential proteins were identified, respectively. Some of the differential proteins were reported to be associated with liver cancer. This differential urinary protein pattern was different from the patterns in W256 subcutaneous, lung metastasis and intracerebral tumour models. Conclusions This study demonstrates that (1) early changes in urinary proteins can be found in the rat liver tumour model; (2) urinary proteins can be used to differentiate the same tumour cells grown in different organs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Li ◽  
Shengqi Wang ◽  
Neng Wang ◽  
Yifeng Zheng ◽  
Bowen Yang ◽  
...  

Abstract Background Metastasis represents the leading cause of death in patients with breast cancer. Traditional Chinese medicine is particularly appreciated for metastatic diseases in Asian countries due to its benefits for survival period prolongation and immune balance modulation. However, the underlying molecular mechanisms remain largely unknown. This study aimed to explore the antimetastatic effect and immunomodulatory function of a clinical formula Aiduqing (ADQ). Methods Naive CD4+ T cells, regulatory T cells (Tregs), and CD8+ T cells were sorted by flow cytometry. Then, breast cancer cells and these immune cells were co-cultured in vitro or co-injected into mice in vivo to simulate their coexistence. Flow cytometry, ELISA, qPCR, double luciferase reporter gene assay, and chromatin immunoprecipitation assay were conducted to investigate the immunomodulatory and antimetastatic mechanisms of ADQ. Results ADQ treatment by oral gavage significantly suppressed 4T1-Luc xenograft growth and lung metastasis in the orthotopic breast cancer mouse model, without noticeable hepatotoxicity, nephrotoxicity, or hematotoxicity. Meanwhile, ADQ remodeled the immunosuppressive tumor microenvironment (TME) by increasing the infiltration of tumor-infiltrating lymphocytes (TILs) and cytotoxic CD8+ T cells, and decreasing the infiltration of Tregs, naive CD4+ T cells, and tumor-associated macrophages (TAMs). Molecular mechanism studies revealed that ADQ remarkably inhibited CXCL1 expression and secretion from TAMs and thus suppressed the chemotaxis and differentiation of naive CD4+ T cells into Tregs, leading to the enhanced cytotoxic effects of CD8+ T cells. Mechanistically, TAM-derived CXCL1 promoted the differentiation of naive CD4+ T cells into Tregs by transcriptionally activating the NF-κB/FOXP3 signaling. Lastly, mouse 4T1-Luc xenograft experiments validated that ADQ formula inhibited breast cancer immune escape and lung metastasis by suppressing the TAM/CXCL1/Treg pathway. Conclusions This study not only provides preclinical evidence supporting the application of ADQ in inhibiting breast cancer metastasis but also sheds novel insights into TAM/CXCL1/NF-κB/FOXP3 signaling as a promising therapeutic target for Treg modulation and breast cancer immunotherapy.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244693
Author(s):  
Lingchen Wang ◽  
Wenhua Wang ◽  
Shaopeng Zeng ◽  
Huilie Zheng ◽  
Quqin Lu

Breast cancer is the most common malignant disease in women. Metastasis is the foremost cause of death. Breast tumor cells have a proclivity to metastasize to specific organs. The lung is one of the most common sites of breast cancer metastasis. Therefore, we aimed to build a useful and convenient prediction tool based on several genes that may affect lung metastasis-free survival (LMFS). We preliminarily identified 319 genes associated with lung metastasis in the training set GSE5327 (n = 58). Enrichment analysis of GO functions and KEGG pathways was conducted based on these genes. The best genes for modeling were selected using a robust likelihood-based survival modeling approach: GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31. A prognostic nomogram for predicting lung metastasis in breast cancer was developed based on these six genes. The effectiveness of the nomogram was evaluated in the training set GSE5327 and the validation set GSE2603. Both the internal validation and the external validation manifested the effectiveness of our 6-gene prognostic nomogram in predicting the lung metastasis risk of breast cancer patients. On the other hand, in the validation set GSE2603, we found that neither the six genes in the nomogram nor the risk predicted by the nomogram were associated with bone metastasis of breast cancer, preliminarily suggesting that these genes and nomogram were specifically associated with lung metastasis of breast cancer. What’s more, five genes in the nomogram were significantly differentially expressed between breast cancer and normal breast tissues in the TIMER database. In conclusion, we constructed a new and convenient prediction model based on 6 genes that showed practical value in predicting the lung metastasis risk for clinical breast cancer patients. In addition, some of these genes could be treated as potential metastasis biomarkers for antimetastatic therapy in breast cancer. The evolution of this nomogram will provide a good reference for the prediction of tumor metastasis to other specific organs.


2020 ◽  
Vol 8 (21) ◽  
pp. 5941-5954
Author(s):  
Wancun Zhang ◽  
Lili Xia ◽  
Xiangyu Ren ◽  
Mengyuan Cui ◽  
Tianguang Liu ◽  
...  

The nanoplatform FA-BSA@DA was developed for the loading of the aspirin prodrug DA and for the subsequent visualization and inhibition of breast cancer metastasis to the lung.


Sign in / Sign up

Export Citation Format

Share Document