scholarly journals Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity

2018 ◽  
Author(s):  
Giorgia Manzo ◽  
Philip M. Ferguson ◽  
V. Benjamin Gustilo ◽  
Tam T. Bui ◽  
Alex F. Drake ◽  
...  

ABSTRACTAntimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required to understand their native function and for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMP activity. Relatively modest modifications to AMP primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane. Here we use a combination of molecular dynamics simulations, circular dichroism, solid-state NMR and patch clamp to investigate the extent to which temporin B and its analogues can be distinguished both in vitro and in silico on the basis of their interactions with model membranes. Enhancing the hydrophobicity of the N-terminus and cationicity of the C-terminus in temporin B improves its membrane activity and potency against both Gram-negative and Gram-positive bacteria. In contrast, enhancing the cationicity of the N-terminus abrogates its ability to trigger channel conductance and renders it ineffective against Staphylococcus aureus while nevertheless enhancing its potency against Escherichia coli. Our findings suggest even closely related AMPs may target the same bacterium with fundamentally differing mechanisms of action.

2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.


2011 ◽  
Vol 22 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Roman Gorelik ◽  
Changsong Yang ◽  
Vasumathi Kameswaran ◽  
Roberto Dominguez ◽  
Tatyana Svitkina

The formin mDia2 mediates the formation of lamellipodia and filopodia during cell locomotion. The subcellular localization of activated mDia2 depends on interactions with actin filaments and the plasma membrane. We investigated the poorly understood mechanism of plasma membrane targeting of mDia2 and found that the entire N-terminal region of mDia2 preceding the actin-polymerizing formin homology domains 1 and 2 (FH1–FH2) module was potently targeted to the membrane. This localization was enhanced by Rif, but not by other tested small GTPases, and depended on a positively charged N-terminal basic domain (BD). The BD bound acidic phospholipids in vitro, suggesting that in vivo it may associate with the plasma membrane through electrostatic interactions. Unexpectedly, a fragment consisting of the GTPase-binding region and the diaphanous inhibitory domain (G-DID), thought to mediate the interaction with GTPases, was not targeted to the plasma membrane even in the presence of constitutively active Rif. Addition of the BD or dimerization/coiled coil domains to G-DID rescued plasma membrane targeting in cells. Direct binding of Rif to mDia2 N terminus required the presence of both G and DID. These results suggest that the entire N terminus of mDia2 serves as a coincidence detection module, directing mDia2 to the plasma membrane through interactions with phospholipids and activated Rif.


2020 ◽  
Vol 167 (5) ◽  
pp. 473-482 ◽  
Author(s):  
Sung-Gun Kim ◽  
Yu-Jen Chen ◽  
Liliana Falzon ◽  
Jean Baum ◽  
Masayori Inouye

Abstract Nascent polypeptides are synthesized on ribosomes starting at the N-terminus and simultaneously begin to fold during translation. We constructed N-terminal fragments of prosubtilisin E containing an intramolecular chaperone (IMC) at N-terminus to mimic cotranslational folding intermediates of prosubtilisin. The IMC-fragments of prosubtilisin exhibited progressive enhancement of their secondary structures and thermostabilities with increasing polypeptide length. However, even the largest IMC-fragment with 72 residues truncated from the C-terminus behaved as a molten globule, indicating the requirement of the C-terminal region to have a stable tertiary structure. Furthermore, truncation of the IMC in the IMC-fragments resulted in aggregation, suggesting that the IMC plays a crucial role to prevent misfolding and aggregation of cotranslational folding intermediates during translation of prosubtilisin polypeptide.


2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Yoko Usami ◽  
Yukihiro Kobayashi ◽  
Takahiro Kameda ◽  
Akari Miyazaki ◽  
Kazuyuki Matsuda ◽  
...  

MCs (mast cells) adversely affect atherosclerosis by promoting the progression of lesions and plaque destabilization. MC chymase cleaves apoA-I (apolipoprotein A-I), the main protein component of HDL (high-density lipoprotein). We previously showed that C-terminally truncated apoA-I (cleaved at the carboxyl side of Phe225) is present in normal human serum using a newly developed specific mAb (monoclonal antibody). In the present study, we aimed to identify chymase-induced cleavage sites in both lipid-free and lipid-bound (HDL3) forms of apoA-I. Lipid-free apoA-I was preferentially digested by chymase, at the C-terminus rather than the N-terminus. Phe229 and Tyr192 residues were the main cleavage sites. Interestingly, the Phe225 residue was a minor cleavage site. In contrast, the same concentration of chymase failed to digest apoA-I in HDL3; however, a 100-fold higher concentration of chymase modestly digested apoA-I in HDL3 at only the N-terminus, especially at Phe33. CPA (carboxypeptidase A) is another MC protease, co-localized with chymase in severe atherosclerotic lesions. CPA, in vitro, further cleaved C-terminal Phe225 and Phe229 residues newly exposed by chymase, but did not cleave Tyr192. These results indicate that several forms of C-terminally and N-terminally truncated apoA-I could exist in the circulation. They may be useful as new biomarkers to assess the risk of CVD (cardiovascular disease).


2008 ◽  
Vol 40 (4) ◽  
pp. 185-198 ◽  
Author(s):  
Sébastien Legardinier ◽  
Jean-Claude Poirier ◽  
Danièle Klett ◽  
Yves Combarnous ◽  
Claire Cahoreau

Recombinant equine LH/chorionic gonadotropin (eLH/CG) was expressed in the baculovirus–Sf9 insect cell system either as a single-chain with the C-terminus of the β-subunit fused to the N-terminus of the α-subunit or as non-covalently linked heterodimers with or without a polyhistidine tag at various locations. All these non-covalently linked eLH/CG variants were secreted as stable heterodimers in the medium of infected Sf9 cells. To assess the influence of the presence and the position of polyhistidine tag on LH bioactivity, we expressed four non-covalently linked tagged heterodimeric eLH/CG variants that were secreted in threefold higher quantities than the single chain. Among them, only two exhibited full in vitro LH bioactivity, relative to untagged heterodimers, namely the one His-tagged at the N-terminus of α-subunit and the other at the C-terminus of the β-subunit both of which are amenable to nickel-affinity purification. Furthermore, single-chain eLH/CG was found to be N- and O-glycosylated but nevertheless less active in in vitro LH bioassays than natural eCG and heterodimeric recombinant eLH/CG. The thermal stability of natural and recombinant hormones was assessed by the initial rates of dissociation from 20 to 90 °C. Heterodimeric eLH/CG from Sf9 cells was found to be as stable as pituitary eLH and serum eCG (T1/2, 74–77 °C). Although Sf9 cells only elaborated short immature-type carbohydrate side chains on glycoproteins, recombinant eLH/CG produced in these cells exhibited stabilities similar to that of pituitary eLH. In conclusion, recombinant heterodimeric eLH/CG exhibits the same thermal stability as natural pituitary LH and its advantages over the single-chain eLH/CG include higher secretion, higher in vitro bioactivity, and reduced potential risk of immunogenicity.


2000 ◽  
Vol 345 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Anita GOYAL ◽  
Janendra K. BATRA

Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro.


2000 ◽  
Vol 182 (3) ◽  
pp. 637-646 ◽  
Author(s):  
Sabine Enz ◽  
Susanne Mahren ◽  
Uwe H. Stroeher ◽  
Volkmar Braun

ABSTRACT In Escherichia coli, transcription of the ferric citrate transport genes fecABCDE is controlled by a novel signal transduction mechanism that starts at the cell surface. Binding of ferric citrate to the outer membrane protein FecA initiates a signal that is transmitted by FecR across the cytoplasmic membrane into the cytoplasm where FecI, the sigma factor, is activated. Interaction between the signaling proteins was demonstrated by utilizing two methods. In in vitro binding assays, FecR that was His tagged at the N terminus [(His)10-FecR] and bound to a Ni-nitrilotriacetic acid agarose column was able to retain FecA, and FecR that was His tagged at the C terminus [FecR-(His)6] retained FecI on the column. An N-terminally truncated, induction-negative but transport-active FecA protein did not bind to (His)10-FecR. The in vivo assay involved the determination of the FecA, FecR, and FecI interacting domains with the bacterial two-hybrid Lex-based system. FecA1–79 interacts with FecR101–317 and FecR1–85 interacts with FecI1–173. These data clearly support a model that proposes interaction of the periplasmic N terminus of FecA with the periplasmic C-terminal portion of FecR and interaction of the cytoplasmic N terminus of FecR with FecI, which results in FecI activation.


1999 ◽  
Vol 10 (7) ◽  
pp. 2425-2440 ◽  
Author(s):  
Cunle Wu ◽  
Ekkehard Leberer ◽  
David Y. Thomas ◽  
Malcolm Whiteway

The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as theSchizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity.


1999 ◽  
Vol 10 (11) ◽  
pp. 3979-3990 ◽  
Author(s):  
Anastasiya D. Blagoveshchenskaya ◽  
Eric W. Hewitt ◽  
Daniel F. Cutler

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.


2002 ◽  
Vol 366 (3) ◽  
pp. 863-872 ◽  
Author(s):  
Bouchaib BAHBOUHI ◽  
Nathalie CHAZAL ◽  
Nabil Georges SEIDAH ◽  
Cristina CHIVA ◽  
Marcelo KOGAN ◽  
...  

The aim of the present study was to evaluate the capacity of synthetic l- and d-peptides encompassing the HIV-1BRU gp160 REKR cleavage site to interfere with HIV and simian immuno-deficiency virus (SIV) replication and maturation of the envelope glycoprotein (Env) precursors. To facilitate their penetration into cells, a decanoyl (dec) group was added at the N-terminus. The sequences synthesized included dec5d or dec5l (decREKRV), dec9d or dec9l (decRVVQREKRV) and dec14d or dec14l (TKAKRRVVQREKRV). The peptide dec14d was also prepared with a chloromethane (cmk) group as C-terminus. Because l-peptides exhibit significant cytotoxicity starting at 35μM, further characterization was conducted mostly with d-peptides, which exhibited no cytotoxicity at concentrations higher than 70μM. The data show that only dec14d and dec14dcmk could inhibit HIV-1BRU, HIV-2ROD and SIVmac251 replication and their syncytium-inducing capacities. Whereas peptides dec5d and dec9d were inactive, dec14dcmk was at least twice as active as peptide dec14d. At the molecular level, our data show a direct correlation between anti-viral activity and the ability of the peptides to interfere with maturation of the Env precursors. Furthermore, we show that when tested in vitro the dec14d peptide inhibited PC7 with an inhibition constant Ki = 4.6μM, whereas the peptide dec14l preferentially inhibited furin with a Ki = 28μM. The fact that PC7 and furin are the major prohormone convertases reported to be expressed in T4 lymphocytes, the principal cell targets of HIV, suggests that they are involved in the maturation of HIV and SIV Env precursors.


Sign in / Sign up

Export Citation Format

Share Document