scholarly journals Multiple myeloma immunoglobulin λ translocations portend poor prognosis

2018 ◽  
Author(s):  
Benjamin G. Barwick ◽  
Paola Neri ◽  
Nizar J. Bahlis ◽  
Ajay K. Nooka ◽  
Jonathan L. Kaufman ◽  
...  

AbstractMultiple myeloma is a malignancy of antibody-secreting plasma cells. Most patients benefit from current therapies, however, 20% of patients relapse or die within two years and are deemed ‘high-risk’. To better understand and identify high-risk myeloma, we analyzed the translocation landscape of 826 newly-diagnosed patients by whole genome sequencing as part of the CoMMpass study. Translocations at the IgL locus were present in 10% of myeloma patients, and corresponded with poor prognosis. Importantly, 70% of IgL translocations co-occurred with hyperdiploid disease, a marker of standard risk, which is routinely diagnosed clinically whereas IgL-translocations are not. Thus, it is likely that the majority of IgL-translocated myeloma is being misclassified. The IgL enhancer is among the strongest in myeloma cells, indicating it can robustly drive oncogene expression when translocated. Consistent with this, IgL-translocated patients failed to benefit from immunomodulatory imide drugs (IMiDs), which target the lymphocyte-specific transcription factor Ikaros. These data implicate the IgL enhancer as resistant to IMiD-inhibition, and when translocated, as a driver of poor prognosis.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4243-4243 ◽  
Author(s):  
Maria-Victoria Mateos ◽  
Norma C Gutierrez ◽  
María-Luisa Martín ◽  
Joaquín Martínez-López ◽  
Miguel T Hernandez ◽  
...  

Abstract Background: Novel insights into the biology of myeloma cells have led to the identification of relevant prognosis factors. CA has become one of the most important prognostic factors, and the presence of t(4;14), t(14;16) or del(17p) are associated with poor prognosis. Although there are some reports indicating that 1q gains may be considered as a poor-risk feature, the information is not uniform. Furthermore, there are important controversies about whether or not novel agents-based combinations are able to overcome the poor prognosis of CA. Bortezomib-based combinations have shown to improve the outcome of patients with high-risk CA but they do not completely overcome their adverse prognosis. Here we report a preplanned analysis, in a series of elderly newly diagnosed myeloma patients included in the Spanish GEM2010 trial and receiving VMP and Rd, in a sequential or alternating approach, in order to evaluate the influence of CA by FISH on the response rate and outcome. Patients and methods: 242 pts were randomized to receive a sequential scheme consisting on 9 cycles of VMP followed by 9 cycles of Rd or the same regimens in an alternating approach (one cycle of VMP alternating with one Rd, up to 18 cycles. VMP included the iv administration of weekly bortezomib (except in the first cycle that was given twice weekly) at 1.3 mg/m2 in combination with oral melphalan 9 mg/m2 and prednisone 60 mg/m2 once daily on days 1-4. Rd treatment consisted on lenalidomide 25 mg daily on days 1-21 plus dexamethasone 40 mg weekly. FISH analysis for t(4;14), t(14;16), del(17p) and 1q gains was performed at diagnosis according to standard procedures using purified plasma cells. Results: In 174 out of the 233 patients evaluable for efficacy and safety, FISH analysis at diagnosis were available and two groups were identified: high-risk group (n= 32 patients with t(4;14) and/or t(14;16) and/or del(17p)) and standard-risk group (n=142 patients without high-risk CA). There weren't differences in the rates of CA according to the treatment arm. Response Rates (RR) were no different in the high-risk vs standard-risk groups, both in the sequential (74% vs 79% RR and 42% vs 39% CR) and alternating arms (69% vs 86% RR and 39% vs 38% CR). After a median follow-up of 37 months, high-risk patients showed shorter PFS as compared to standard risk in the alternating arm (24 versus 36 months, p=0.01, HR 2.2, 95% IC 1.1-4.2) and this also translated into a significantly shorter 4-years OS (27% vs 72%, p=0.006, HR 3.3, 95% IC 1.4-7.7). However, in the sequential arm, high-risk and standard-risk patients showed similar PFS (32 months vs 30 months) and 4-years OS (64% vs 60%). This effect was observed only in the sequential arm applied to either t(4;14) or del(17p). As far as 1q gains is concerned, 151 patients had 1q information and 76 of them had 1q gains (50.3%), defined as the presence of more than 3 copies in at least 10% of plasma cells. The rate of 1q gains was well balanced in both sequential and alternating arms. The ORR was similar in patients with or without 1q gains (83% vs 80%) as well as the CR rate (45% vs 31%), and no differences were observed between sequential and alternating arms. Patients with or without 1q gains had a similar PFS (33 months vs 30 months) and 4-years OS (58% vs 65%) in the whole series and no differences were observed in the sequential and alternating arms. This effect has been observed in patients with 1q gains as isolated CA and the outcome was slightly but not significantly worse when 1q gains were present plus either t(4;14) and/or del17p. Conclusions: The total therapy approach including VMP and Rd administered in a sequential approach is able to overcome the poor prognosis of the presence of high-risk CA in elderly patients with newly diagnosed MM. The presence of 1q gains has no impact in the PFS and OS of elderly patients treated with VMP and Rd. Disclosures Mateos: Celgene: Consultancy, Honoraria; Onyx: Consultancy; Janssen-Cilag: Consultancy, Honoraria; Takeda: Consultancy. Gironella:Celgene Corporation: Consultancy, Honoraria. Paiva:BD Bioscience: Consultancy; Binding Site: Consultancy; Sanofi: Consultancy; EngMab AG: Research Funding; Onyx: Consultancy; Millenium: Consultancy; Janssen: Consultancy; Celgene: Consultancy. Puig:Janssen: Consultancy; The Binding Site: Consultancy. San Miguel:Millennium: Honoraria; Janssen-Cilag: Honoraria; Novartis: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Onyx: Honoraria; Sanofi-Aventis: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 78-78
Author(s):  
Ankit K. Dutta ◽  
Elizabeth D. Lightbody ◽  
Ziao Lin ◽  
Jean-Baptiste Alberge ◽  
Romanos Sklavenitis-Pistofidis ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is an incurable hematologic malignancy characterized by the abnormal growth of clonal plasma cells in the bone marrow (BM). In most cases MM develops from early, asymptomatic disease stages known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Despite effective new therapies, most MM patients inevitably relapse and require further treatment, highlighting the need for better early detection methods for precursor patients and targeted interventions to prevent early disease from progressing. The initial diagnosis of MGUS/SMM remains an incidental process following the identification of increased clonal immunoglobulin in the blood. BM biopsy is the gold standard for diagnosis and monitoring of MM progression, but is intrusive, painful, and comes with possible secondary complications for patients. Consequently, repeated assessment is not a feasible option for MGUS and SMM patients who are asymptomatic. Here we tested the utility of circulating multiple myeloma cells (CMMCs) from non-invasive blood biopsy to accompany BM as a method to monitor disease development, by enumerating CMMCs from MGUS/SMM patients. Methods: Peripheral blood from 185 precursor patients (75 MGUS and 110 SMM) from the Dana-Farber Cancer Institute observational PCROWD study (IRB #14-174) was collected in CellRescue TM Preservative Tubes and processed on the CellSearch CellTracks Autoprep system using the CMMC assay kit using 4mL of blood. This assay employs the enrichment of CMMCs through the immunophenotype of CD138 +CD45 -19 -, and leukocyte exclusion based on CD45 +CD19 +. Nucleated cells were identified using DAPI staining. The CellTracks Analyzer II fluorescence microscope system was subsequently used to scan captured CMMC cartridges, with software allowing the automated scoring and enumeration of CMMCs. Additional molecular analyses were carried out on SMM patients. Briefly, minipools of CMMCs were sorted by DEPArray and underwent whole genome amplification using Ampli1 kit, PCR-free library construction, quantification and low pass whole genome sequencing (~0.5x) on the Illumina HiSeq2500. To assess whether molecular analyses can be performed to detect hyperdiploidy as a genomic biomarker of MM disease, ichorCNA analyses was performed to determine copy number variant (CNV) events and infer tumour fraction. Results: CMMCs were detected in 27% of MGUS patients collected, with a median count of 2 CMMCs (range 0 to 1328). Comparably, CMMCs were detected in 57% of SMM patients, with a median enumeration of 13 CMMCs (range 0 to 43836). Enumeration of CMMCs illustrated a correlation with clinical measure of disease including the International Myeloma Working Group 2/20/20 risk stratification model. A higher CMMC count was associated with increasing risk group based on the 3-risk factor model, with a median of 5, 29 and 59 CMMCs detected at low, intermediate, and high-risk SMM groups, respectively. CMMC counts were significantly increased at intermediate (P = 5.0 x 10 -4) and high-risk stages (P = 3.7 x 10 -3) compared to low-risk. While enumeration provides a correlative measure of CMMCs that may be of tumor origin, downstream molecular characterization can confirm MM-associated genetic alterations. At the precursor stages, a low tumour burden is evident clinically, thus both normal and malignant plasma cells are present. Therefore, to determine the concordance between bone marrow and peripheral blood CMMCs, we performed genomic analyses to identify arm level gain or loss events. Molecular analyses of CMMCs was carried out in patients who had matched BM and clinical fluorescent in situ hybridization (FISH) results. We showed that CMMCs can capture 100% of clinically annotated BM FISH CNV events. Furthermore, CMMC samples identified additional yield, with further CNVs identified that were not observed by FISH. In cases that did not have BM biopsy results, sequencing of CMMCs revealed the existence of genetic aberrations. Conclusion: Our results demonstrate clinical correlation and molecular characterization of CMMCs from MGUS/SMM patients. This study provides a foundation for non-invasive detection, enumeration and genomic interrogation of rare CMMCs from the peripheral blood of MGUS/SMM, illustrating the clinical potential of using liquid biopsies for monitoring and managing disease in the precursor setting of MM. Disclosures Getz: IBM, Pharmacyclics: Research Funding; Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3353-3353
Author(s):  
Davide Vagnoni ◽  
Fosco Travaglini ◽  
Stefano Angelini ◽  
Alessia Dalsass ◽  
Francesca Mestichelli ◽  
...  

Abstract Multiple Myeloma (MM) is a clonal B-cell disorder characterized by accumulation of malignant plasma cells (PCs) in the bone marrow (BM). Circulating PCs can be detected in the peripheral blood of a significant proportion of patients with MM and their presence is a well-known prognostic factor. Indeed, the appearance of circulating PCs in the blood could indicate relative indipendence from adhesion to the microenvironment, thus implying more aggressive disease. In this study, we examined the relationship between the number of PCs and citogenetic risk in patients with newly diagnosed MM. We analyzed peripheral blood from patients with Monoclonal Gammopathy of Undetermined Significance (MGUS; n=15), Smoldering Myeloma (SM; n=28), Solitary Plasmacytomas (SP; n=3) and active Multiple Myeloma (MM; n=105). These patients were followed by the U.O.C. Ematologia at the "Mazzoni" Hospital from January 2006 to December 2013, with a median follow-up of 25 months. We analyzed clinical, laboratory and cytogenetic data of patients with active MM. However, cytogenetic analysis was not evaluable for 15 patients. The number of circulating PCs was detected by flow cytometry using a simple two-colours approach. Cells were stained with fluorescence-labeled CD38 and CD45 antibodies and 50,000 events were acquired and analyzed for each patient. PCs were identified by gating on CD38bright+/CD45- cells. Using a receiver operating characteristics (ROC) analysis, we assessed that ³41circulating PCs is the optimal cut-off for defining poor prognosis. The 8-years probability of Overall Survival (OS) and Progression-Free Survival (PFS) in patients with <41 and ³41circulating PCs, was 32% vs 8% (p=0.017) and 29% vs 0% (p=0.0008), respectively. Patients with high-risk cytogenetics (n=24) had poor prognosis, independently of circulating PCs (PC<41 vs PC³41: OS=0% vs OS=16%, p=n.s.; PFS=0% vs 17%, p=n.s.). Patients with standard-risk cytogenetics (n=66) showed a better prognosis associated to a lower number of circulating PCs (PC<41 vs PC³41: OS=36% vs 10%, p=0.026; PFS=37% vs 0%, p=0.0001). These data were confirmed by multivariate analysis (Cox model) for the subgroup with standard-risk cytogenetics, in which the presence of ³41 circulating PCs, older age, DS stage >I and lack of maintenance therapy, adversely affected OS and PFS. All patients with SP showed no circulating PCs. In all cases of MGUS or SM, circulating PCs, when detected, were <20. In summary, our results suggest that the quantification of circulating PCs by flow cytometry could provide useful prognostic information in newly diagnosed MM patients with standard-risk cytogenetics. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Kriegova ◽  
Regina Fillerova ◽  
Jiri Minarik ◽  
Jakub Savara ◽  
Jirina Manakova ◽  
...  

AbstractExtramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp–50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1780-1787 ◽  
Author(s):  
TE Witzig ◽  
MA Gertz ◽  
JA Lust ◽  
RA Kyle ◽  
WM O'Fallon ◽  
...  

Abstract The purpose of this study was to quantitate the number and labeling index of monoclonal plasma cells in the blood of patients with newly diagnosed multiple myeloma (MM) to learn if these values were independent prognostic factors for survival. Patients were candidates for this study if they had untreated myeloma requiring therapy, were evaluated at our institution between 1984 and 1993, and had a sample of blood analyzed with a sensitive immunofluorescence technique for monoclonal plasma cells and the blood B-cell labelling index (BLI). The % blood monoclonal plasma cells (%BPC) and the BLI were analyzed along with stage, marrow plasma cell LI, % marrow plasma cells, calcium, creatinine, albumin, beta-2-microglobulin, and C-reactive protein as univariate and multivariate factors for survival. Eighty percent of the 254 patients accrued to this study had monoclonal BPC detected. The median % BPC was 6% and 57% (144 of 254) of patients had a high number (> or = 4%). Patients with > or = 4% BPC had a median survival of 2.4 years vs 4.4 years for those with < 4% BPC (P < .001). The BLI was also prognostic (P = .008). In a multivariate analysis, the % BPC, age, albumin, stage, marrow plasma cell LI, and the BLI were independent factors for survival. The %BPC and the marrow plasma cell LI best separated the group into low, intermediate, and high risk myeloma with median survivals of 52, 35, and 26 months, respectively. Patients with high %BPC were less likely to have lytic bone disease from their MM (P = .002). The %BPC and the BLI are independent prognostic factors for survival and are useful in identifying patients as low, intermediate, and high risk. Clonal cells in the blood should be quantified in future clinical trials for myeloma.


2015 ◽  
Vol 170 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Davide Vagnoni ◽  
Fosco Travaglini ◽  
Valerio Pezzoni ◽  
Miriana Ruggieri ◽  
Catia Bigazzi ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3820-3820
Author(s):  
Yi Tao ◽  
Zhimin Gu ◽  
Ye Yang ◽  
Hongwei Xu ◽  
Xiaojing Hu ◽  
...  

Abstract Background We have recently established that increased chromosomal instability (CIN) signature is linked to drug resistance and poor outcome in multiple myeloma (MM) and other cancers. Thyroid Hormone Receptor Interactor 13 (Trip13), one of the 56 drug-resistant genes, plays a key role in chromosomal recombination and structure development during meiosis and has been reported to be increased in some malignancies including lung cancer, prostate cancer and breast cancer. In this study, we investigated how important Trip13 is in myelomagenesis and progression. Materials and Methods Gene expression profiling (GEP) was analyzed on plasma cells from 22 healthy donors, 44 patients with monoclonal gammopathy of undetermined significance (MGUS), 351 patients with newly diagnosed multiple myeloma, and 9 human myeloma cell lines, as well as on 36 sequential samples at diagnosis, pre-1st, pre-2nd and post-2nd autologous stem cell transplantation (ASCT). Over-expression and knock-down experiments of Trip13 were performed on myeloma cell lines by lentivirus transfection. Cell viability was assessed by trypan exclusion assay. Western blots were used to detect the expression of Trip13, P31 comet, caspase-8, caspase-9, caspase-3 and PARP, and checkpoint related proteins MAD2 and CDC20 in Trip13 overexpressed or Trip13 shRNA-transfected myeloma cells. Results Sequential GEP samples showed that Trip13 expression increased in 8 of 9 patients after chemotherapy and ASCT compared to the samples at diagnosis strongly suggesting that increased Trip13 is associated with drug resistance. Trip13 was already significantly increased in MGUS patients, newly diagnosed MM patients and MM cell lines compared with normal plasma cells. Furthermore, Trip13 was significantly higher in high-risk MMs than in low-risk MMs and increased Trip13 was linked to an inferior event-free survival (EFS) (p<0.01) and overall survival (OS) (p<0.01) in 351 newly diagnosed MMs. In contrast, the Trip13-interacting gene P31 comet was down-regulated in high-risk MMs and high expression of P31 was associated with good outcome. Interestingly, patients with high Trip13 and low P31 comet have the worst outcome compared to patients with only one of these, suggesting the interaction of Trip 13 and p31 has a synergistic effect on MM progression. Transfection of Trip13 into ARP1 and OCI-My5 cells significantly increased cell proliferation, while knock-down Trip13 in OCI-My5, H929, RPMI8226 cells inhibited cell growth and induced MM cell apoptosis with increases of cleaved caspase-8, caspase-9, caspase-3 and PARP. Mechanistic studies showed that Trip13 over-expression decreased P31comet and MAD2 expression by western blotting, but increased CDC20. Conclusions The association of increased Trip13 and decreased p31 is a good biomarker for MM drug resistance and poor prognosis. Our results also show Trip13 and P31 comet could be potential targets to overcome drug resistance in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5316-5316
Author(s):  
Andrei Garifullin ◽  
Irina Martynkevich ◽  
Sergei Voloshin ◽  
Alexei Kuvshinov ◽  
Ludmila Martynenko ◽  
...  

Abstract Background. Genetic anomalies (GA) are primary link of pathogenesis in MM. GA lead to formation of clonal plasma cells, which has different phenotype. Aim. To estimate the incidence of GA and their correlation with clonal plasma cells' phenotype in patients with ND MM. Methods. We analysed 22 patients with ND MM (median age 57 years, range 38-80; male/female - 1:1.75). Cytogenetic analysis was performed on bone marrow samples using standard GTG-method. Metaphase FISH analysis was performed according to the manufacturer's protocol using DNA probes: LSI 13(RB1)13q14, IGH/CCND1, IGH/FGFR3, LSI TP53 (17q13.1). 8-color immunophenotypic by flow cytometry using antibody to CD45, CD38, CD138, CD56, CD19, CD20, CD27 and CD117 antigenes. Results. Translocation t(11;14) was detected in 3/14 (21.4%) patients, del(13q) - 2/14 (14.3%), t(11;14) - 3/14 (21.4%), hypodyploidy - 1/20 (5%), del(17р) - 0% patients. Clonal plasma cells' phenotype CD38+CD138+CD45- was detected in 100%. Expression CD56+ was revealed in 11/22 (50%) patients, CD19+ in 9/22 (40.9%), CD117+ in 5/22 (22.7%), CD20+ in 1/22 (4.5%), CD27+ in 1/22 (4.5%). The frequency of GA didn't depend on clonal plasma cells' phenotype and was 27.3%(3/11) in CD56+ phenotype, 23.8%(5/21) - CD20-, 23.8%(5/21) - CD27-, 23.5%(4/17) - CD117-, 23%(3/13) - CD19-, 22.2%(2/9) - CD19+, 20%(1/5) - CD117+, 18.2%(2/11) - CD56-, 0%(0/1) - CD20+, 0%(0/1) - in CD27+ phenotype. Patients of standard risk group according to mSMART 2.0 with GA had CD19-negative plasma cells' phenotype vs. CD19-positive phenotype in patients of intermediate and high-risk groups (p<0.05). 3-years overall survival in standard risk group with CD19- phenotype was 92,3%, CD19+ - 77,7% (p>0.05). Conclusion . Identification of GA, which has adverse forecast, correlates with CD19+ plasma cells phenotype. The combined definition of plasma cells phenotype and GA can improve the system of risk stratification in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document