scholarly journals Modulation of mutantKrasG12D-driven lung tumorigenesisin vivoby gain or loss of PCDH7 function

2018 ◽  
Author(s):  
Xiaorong Zhou ◽  
Bret M. Evers ◽  
Mahesh S. Padanad ◽  
James A. Richardson ◽  
Emily Stein ◽  
...  

ABSTRACTPROTOCADHERIN 7 (PCDH7), a transmembrane receptor and member of the Cadherin superfamily, is frequently overexpressed in lung adenocarcinoma and is associated with poor clinical outcome. While PCDH7 was recently shown to promote transformation and facilitate brain metastasis in lung and breast cancers, decreased PCDH7 expression has also been documented in colorectal, gastric, and invasive bladder cancers. These data suggest context-dependent functions for PCDH7 in distinct tumor types. Given that PCDH7 is a potentially targetable molecule on the surface of cancer cells, further investigation of its role in tumorigenesisin vivois needed to evaluate the therapeutic potential of its inhibition. Here we report the analysis of novel PCDH7 gain- and loss-of-function mouse models and provide compelling evidence that this cell-surface protein acts as a potent lung cancer driver. Employing a Cre-inducible transgenic allele, we demonstrated that enforced PCDH7 expression significantly acceleratesKrasG12D-driven lung tumorigenesis and potentiates MAPK pathway activation. Furthermore, we performedin vivosomatic genome editing with CRISPR/Cas9 inKrasLSL-G12D;Tp53fl/fl(KP) mice to assess the consequences of PCDH7 loss of function. Inactivation of PCDH7 in KP mice significantly reduced lung tumor development, prolonged survival, and diminished phospho-activation of ERK1/2. Together, these findings establish a critical oncogenic function for PCDH7in vivoand highlight the therapeutic potential of PCDH7 inhibition for lung cancer. Moreover, given recent reports of elevated or reduced PCDH7 in distinct tumor types, the new inducible transgenic model described here provides a robust experimental system for broadly elucidating the effects of PCDH7 overexpressionin vivo.AUTHOR SUMMARYLung cancer is the leading cause of cancer-associated deaths worldwide. PROTOCADHERIN 7 (PCDH7), cell surface protein and member of the Cadherin superfamily, is frequently overexpressed in lung adenocarcinomas and is associated with poor clinical outcome. Nevertheless, it has yet to be shownin vivowhether PCDH7 plays a role in the initiation and progression of lung cancer, and whether it represents an actionable therapeutic target. Here we demonstrate, using a novel transgenic mouse model, that PCDH7 overexpression acceleratesKrasG12D-driven lung tumorigenesis. Furthermore, we validate PCDH7 as a therapeutic target by knocking it out usingin vivosomatic genome editing in theKrasLSL-G12D;Tp53fl/fl(KP) model. Our results provide new insight into the mechanisms that drive lung cancer pathogenesis and, because targeting oncogenic cell-surface proteins with antibodies has proven to be a highly effective anti-cancer therapeutic strategy, establish a new target for cancer treatment. Moreover, given recent reports of elevated or reduced PCDH7 in distinct tumor types, the transgenic PCDH7 model described here provides a robust experimental system for elucidating the effects of PCDH7 overexpression in differentin vivosettings. This model will also provide an ideal system for future testing of therapeutics directed at PCDH7.

2020 ◽  
Author(s):  
Rachana Garg ◽  
Mariana Cooke ◽  
Shaofei Wang ◽  
Fernando Benavides ◽  
Martin C. Abba ◽  
...  

ABSTRACTNon-small cell lung cancer (NSCLC), the most frequent subtype of lung cancer, remains a highly lethal malignancy and one of the leading causes of cancer deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histological form of NSCLC. In this study, we examined the role of PKCε, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Notably, database analysis revealed an association between PKCε expression and poor outcome in lung adenocarcinoma patients specifically having KRAS mutation. By generating a PKCε-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D;PKCε−/− mice) we were able to demonstrate the requirement of PKCε for Kras-driven lung tumorigenesis in vivo, which is consistent with the impaired transformed growth observed in PKCε-deficient KRAS-dependent NSCLC cells. Moreover, PKCε-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA-Seq revealed little overlapping for PKCε and KRAS in the control of genes/biological pathways relevant in NSCLC, suggesting that a permissive role of PKCε in KRAS-driven lung tumorigenesis may involve non-redundant mechanisms. Our results thus highlight the relevance and potential of targeting PKCε for lung cancer therapeutics.


2021 ◽  
Author(s):  
Beatrice Parma ◽  
Vignesh Ramesh ◽  
Paradesi Naidu Gollavilli ◽  
Aarif Siddiqui ◽  
Luisa Pinna ◽  
...  

ABSTRACTThe identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. Here, we show HSPD1 (HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients’ prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on OXPHOS and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NCSLC.SignificanceHSPD1 elimination or disruption interferes with NSCLC metabolic activity causing a strong OXPHOS-dependent energetic breakdown, which the cancer cells fail to overcome, highlighting HSPD1 as a potential theranostic marker for improving lung cancer therapy.


2020 ◽  
Vol 12 (562) ◽  
pp. eaba4434
Author(s):  
Karin Hansson ◽  
Katarzyna Radke ◽  
Kristina Aaltonen ◽  
Jani Saarela ◽  
Adriana Mañas ◽  
...  

Neuroblastoma is a childhood malignancy with often dismal prognosis; relapse is common despite intense treatment. Here, we used human tumor organoids representing multiple MYCN-amplified high-risk neuroblastomas to perform a high-throughput drug screen with approved or emerging oncology drugs. Tumor-selective effects were calculated using drug sensitivity scores. Several drugs with previously unreported anti-neuroblastoma effects were identified by stringent selection criteria. ARRY-520, an inhibitor of kinesin spindle protein (KSP), was among those causing reduced viability. High expression of the KSP-encoding gene KIF11 was associated with poor outcome in neuroblastoma. Genome-scale loss-of-function screens in hundreds of human cancer cell lines across 22 tumor types revealed that KIF11 is particularly important for neuroblastoma cell viability. KSP inhibition in neuroblastoma patient-derived xenograft (PDX) cells resulted in the formation of abnormal monoastral spindles, mitotic arrest, up-regulation of mitosis-associated genes, and apoptosis. In vivo, KSP inhibition caused regression of MYCN-amplified neuroblastoma PDX tumors. Furthermore, treatment of mice harboring orthotopic neuroblastoma PDX tumors resulted in increased survival. Our results suggested that KSP inhibition could be a promising treatment strategy in children with high-risk neuroblastoma.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1572 ◽  
Author(s):  
Daniel Salas-Treviño ◽  
Odila Saucedo-Cárdenas ◽  
María de Jesús Loera-Arias ◽  
Humberto Rodríguez-Rocha ◽  
Aracely García-García ◽  
...  

Carbon nanotubes (CNTs) have emerged in recent years as a potential option for drug delivery, due to their high functionalization capacity. Biocompatibility and selectivity using tissue-specific biomolecules can optimize the specificity, pharmacokinetics and stability of the drug. In this study, we design, develop and characterize a drug nanovector (oxCNTs-HA-CPT) conjugating oxidated multi-wall carbon nanotubes (oxCNTs) with hyaluronate (HA) and carboplatin (CPT) as a treatment in a lung cancer model in vitro. Subsequently, we exposed TC–1 and NIH/3T3 cell lines to the nanovectors and measured cell uptake, cell viability, and oxidative stress induction. The characterization of oxCNTs-HA-CPT reveals that on their surface, they have HA. On the other hand, oxCNTs-HA-CPT were endocytosed in greater proportion by tumor cells than by fibroblasts, and likewise, the cytotoxic effect was significantly higher in tumor cells. These results show the therapeutic potential that nanovectors possess; however, future studies should be carried out to determine the death pathways involved, as well as their effect on in vivo models.


2018 ◽  
Vol 10 (444) ◽  
pp. eaat0195 ◽  
Author(s):  
Xianjun Gao ◽  
Ning Ran ◽  
Xue Dong ◽  
Bingfeng Zuo ◽  
Rong Yang ◽  
...  

Exosomes are circulating nanovesicular carriers of macromolecules, increasingly used for diagnostics and therapeutics. The ability to load and target patient-derived exosomes without altering exosomal surfaces is key to unlocking their therapeutic potential. We demonstrate that a peptide (CP05) identified by phage display enables targeting, cargo loading, and capture of exosomes from diverse origins, including patient-derived exosomes, through binding to CD63—an exosomal surface protein. Systemic administration of exosomes loaded with CP05-modified, dystrophin splice–correcting phosphorodiamidate morpholino oligomer (EXOPMO) increased dystrophin protein 18-fold in quadriceps of dystrophin-deficient mdx mice compared to CP05-PMO. Loading CP05-muscle–targeting peptide on EXOPMO further increased dystrophin expression in muscle with functional improvement without any detectable toxicity. Our study demonstrates that an exosomal anchor peptide enables direct, effective functionalization and capture of exosomes, thus providing a tool for exosome engineering, probing gene function in vivo, and targeted therapeutic drug delivery.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 473-473
Author(s):  
Marcin Wysoczynski ◽  
Fadhi Hayek ◽  
Janina Ratajczak ◽  
Anna Janowska-Wieczorek ◽  
Mariusz Z. Ratajczak

Abstract Viable eukaryotic cells shed circular membrane fragments called microvesicles (MV) from the cell surface and secrete them from the endosomal compartments. These MV, which are different from apoptotic bodies, are enriched in lipids, proteins and mRNA. We postulate that MV play an important and underappreciated role in cell-cell communication by i) stimulating target cells with ligands that the MV express, ii) fusing with target cells and thus transferring various receptors to their surface, and iii) delivering mRNA, lipids and proteins. Since tumor cells secrete large quantities of MV we hypothesized that the latter are important constituents of the tumor microenvironment and their role in tumor progression merited investigation. First, we observed that human and murine lung cancer cell lines secrete more MV in response to non-apoptotic doses of hypoxia, irradiation and chemotherapy. The MV derived from human cancer cells chemoattracted bone marrow-, lymph node- and lung-derived fibroblasts and endothelial cells and activated in these stromal cells the phosphorylation of MAPKp42/44 and AKT. Furthermore, they also induced in bone marrow- and lung-derived fibroblasts expression of LIF, OSM, IL-11, VEGF and MMP-9. Moreover, conditioned media from marrow fibroblasts exposed to MV induced phosphorylation of STAT-3 proteins and chemoattracted lung cancer cells in a LIF- and OSM-dependent manner and, together with IL-11 and VEGF, activated osteoclasts and endothelial cells. Furthermore, MV from cancer cells embedded in Matrigel implants strongly stimulated angiogenesis. We also found that tumor-derived MV express tissue factor (TF) and activate platelets and as a result of this MV derived from activated platelets transfer several adhesion molecules from platelets to the tumor cell surface. This increases adhesiveness of lung cancer cells in endothelium and their metastatic spread in vivo after injection into syngeneic mice. Finally, we found that formation of MV depends on the formation of membrane lipid rafts. Thus we postulate that tumor- and platelet-derived MV are underappreciated constituents of the tumor microenvironment and play a pivotal role in tumor progression/metastasis and angiogenesis. As MV formation appears to be lipid raft-dependent, we suggest that inhibitors of membrane lipid raft formation (e.g, statins or polyene antibiotics) could decrease MV-dependent tumor spread/growth and we are currently testing this hypothesis in animal models in vivo.


2020 ◽  
Author(s):  
Weijia Xie ◽  
Youhao Wang ◽  
Yao Zhang ◽  
Ying Xiang ◽  
Na Wu ◽  
...  

Abstract Background: Single nucleotide polymorphisms (SNPs) and long non-coding RNAs (lncRNAs) have been involved in the process of lung cancer. Following clues given by lung cancer risk-associated SNPs, we aimed to find novel functional lncRNAs as candidate targets in non-small cell lung cancer (NSCLC). Methods: Case-control analyses were performed in 626 cases and 736 controls matched up on sex and age. The lncRNA OSER1-AS1 was identified near a lung cancer risk-associated SNP rs4142441. Kaplan–Meier survival analysis was performed to investigate the association between OSER1-AS1 expression and overall survival. The influence of rs4142441 on the expression level of OSER1-AS1 was confirmed using Luciferase assays. Subsequently, the biological function of OSER1-AS1 was assessed in vitro by cell proliferation, migration, and invasion experiments through gain- and loss-of-function approaches, and in vivo by subcutaneous tumor model and tail vein injection lung metastasis model. ChIP and RIP experiments were carried out to investigate the interaction between transcription factors, RNA-binding proteins, and OSER1-AS1.Results: OSER1-AS1 was down-regulated in tumor tissue and its low expression was significantly associated with poor overall survival among non-smokers in NSCLC patients. Gain- and loss-of-function studies revealed that OSER1-AS1 acted as a tumor suppressor by inhibiting lung cancer cell growth, migration and invasion in vitro. Xenograft tumor assays and metastasis mouse model confirmed that OSER1-AS1 suppressed tumor growth and metastasis in vivo. The promoter of OSER1-AS1 was repressed by MYC, and the 3’-end of OSER1-AS1 was competitively targeted by microRNA hsa-miR-17-5p and RNA-binding protein ELAVL1. Conclusion: Our results indicated that OSER1-AS1 exerted tumor-suppressive functions by acting as an ELAVL1 decoy to keep it away from its target mRNAs. Our findings characterized OSER1-AS1 as a new tumor suppressive lncRNA in NSCLC, suggesting that OSER1-AS1 may be suitable as a potential biomarker for prognosis, and a potential target for treatment.


2018 ◽  
Author(s):  
Björn Kruspig ◽  
Tiziana Monteverde ◽  
Sarah Neidler ◽  
Andreas Hock ◽  
Emma Kerr ◽  
...  

AbstractKRAS is the most frequently mutated driver oncogene in human adenocarcinoma of the lung. There are presently no clinically proven strategies for treatment of KRAS-driven lung cancer. Activating mutations in KRAS are thought to confer independence from upstream signaling, however recent data suggest that this independence may not be absolute. Here we show that initiation and progression of KRAS-driven lung tumors requires input from ERBB family RTKs: Multiple ERBB RTKs are expressed and active from the earliest stages of KRAS driven lung tumor development, and treatment with a multi-ERBB inhibitor suppresses formation of KRasG12D-driven lung tumors. We present evidence that ERBB activity amplifies signaling through the core RAS pathway, supporting proliferation of KRAS mutant tumor cells in culture and progression to invasive disease in vivo. Importantly, brief pharmacological inhibition of the ERBB network significantly enhances the therapeutic benefit of MEK inhibition in an autochthonous tumor setting. Our data suggest that lung cancer patients with KRAS-driven disease may benefit from inclusion of multi-ERBB inhibitors in rationally designed treatment strategies.One Sentence SummaryG12 Mutant KRAS requires tonic ERBB network activity for initiation and maintenance of lung cancer


2021 ◽  
Vol 13 (584) ◽  
pp. eaay9056 ◽  
Author(s):  
Ana M. Moreno ◽  
Fernando Alemán ◽  
Glaucilene F. Catroli ◽  
Matthew Hunt ◽  
Michael Hu ◽  
...  

Current treatments for chronic pain rely largely on opioids despite their substantial side effects and risk of addiction. Genetic studies have identified in humans key targets pivotal to nociceptive processing. In particular, a hereditary loss-of-function mutation in NaV1.7, a sodium channel protein associated with signaling in nociceptive sensory afferents, leads to insensitivity to pain without other neurodevelopmental alterations. However, the high sequence and structural similarity between NaV subtypes has frustrated efforts to develop selective inhibitors. Here, we investigated targeted epigenetic repression of NaV1.7 in primary afferents via epigenome engineering approaches based on clustered regularly interspaced short palindromic repeats (CRISPR)–dCas9 and zinc finger proteins at the spinal level as a potential treatment for chronic pain. Toward this end, we first optimized the efficiency of NaV1.7 repression in vitro in Neuro2A cells and then, by the lumbar intrathecal route, delivered both epigenome engineering platforms via adeno-associated viruses (AAVs) to assess their effects in three mouse models of pain: carrageenan-induced inflammatory pain, paclitaxel-induced neuropathic pain, and BzATP-induced pain. Our results show effective repression of NaV1.7 in lumbar dorsal root ganglia, reduced thermal hyperalgesia in the inflammatory state, decreased tactile allodynia in the neuropathic state, and no changes in normal motor function in mice. We anticipate that this long-lasting analgesia via targeted in vivo epigenetic repression of NaV1.7 methodology we dub pain LATER, might have therapeutic potential in management of persistent pain states.


Sign in / Sign up

Export Citation Format

Share Document