scholarly journals Identification of candidate master transcription factors within enhancer-centric transcriptional regulatory networks

2018 ◽  
Author(s):  
Alexander J. Federation ◽  
Donald R. Polaski ◽  
Christopher J. Ott ◽  
Angela Fan ◽  
Charles Y. Lin ◽  
...  

AbstractRegulation of gene expression through binding of transcription factors (TFs) to cis-regulatory elements is highly complex in mammalian cells. Genome-wide measurement technologies provide new means to understand this regulation, and models of TF regulatory networks have been built with the goal of identifying critical factors. Here, we report a network model of transcriptional regulation between TFs constructed by integrating genomewide identification of active enhancers and regions of focal DNA accessibility. Network topology is confirmed by published TF ChIP-seq data. By considering multiple methods of TF prioritization following network construction, we identify master TFs in well-studied cell types, and these networks provide better prioritization than networks only considering promoter-proximal accessibility peaks. Comparisons between networks from similar cell types show stable connectivity of most TFs, while master regulator TFs show dramatic changes in connectivity and centrality. Applying this method to study chronic lymphocytic leukemia, we prioritized several network TFs amenable to pharmacological perturbation and show that compounds targeting these TFs show comparable efficacy in CLL cell lines to FDA-approved therapies. The construction of transcriptional regulatory network (TRN) models can predict the interactions between individual TFs and predict critical TFs for development or disease.

2020 ◽  
Vol 117 (29) ◽  
pp. 17228-17239 ◽  
Author(s):  
Saugat Poudel ◽  
Hannah Tsunemoto ◽  
Yara Seif ◽  
Anand V. Sastry ◽  
Richard Szubin ◽  
...  

The ability ofStaphylococcus aureusto infect many different tissue sites is enabled, in part, by its transcriptional regulatory network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying independent component analysis to a compendium of 108 RNA-sequencing expression profiles from twoS. aureusclinical strains (TCH1516 and LAC). ICA decomposed theS. aureustranscriptome into 29 independently modulated sets of genes (i-modulons) that revealed: 1) High confidence associations between 21 i-modulons and known regulators; 2) an association between an i-modulon and σS, whose regulatory role was previously undefined; 3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR, and Vim-3; 4) the roles of three key transcription factors (CodY, Fur, and CcpA) in coordinating the metabolic and regulatory networks; and 5) a low-dimensional representation, involving the function of few transcription factors of changes in gene expression between two laboratory media (RPMI, cation adjust Mueller Hinton broth) and two physiological media (blood and serum). This representation of the TRN covers 842 genes representing 76% of the variance in gene expression that provides a quantitative reconstruction of transcriptional modules inS. aureus, and a platform enabling its full elucidation.


mSystems ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
David Bergenholm ◽  
Guodong Liu ◽  
Petter Holland ◽  
Jens Nielsen

ABSTRACT To build transcription regulatory networks, transcription factor binding must be analyzed in cells grown under different conditions because their responses and targets differ depending on environmental conditions. We performed whole-genome analysis of the DNA binding of five Saccharomyces cerevisiae transcription factors involved in lipid metabolism, Ino2, Ino4, Hap1, Oaf1, and Pip2, in response to four different environmental conditions in chemostat cultures, which allowed us to keep the specific growth rate constant. Chromatin immunoprecipitation with lambda exonuclease digestion (ChIP-exo) enabled the detection of binding events at a high resolution. We discovered a large number of unidentified targets and thus expanded functions for each transcription factor (e.g., glutamate biosynthesis as a target of Oaf1 and Pip2). Moreover, condition-dependent binding of transcription factors in response to cell metabolic state (e.g., differential binding of Ino2 between fermentative and respiratory metabolic conditions) was clearly suggested. Combining the new binding data with previously published data from transcription factor deletion studies revealed the high complexity of the transcriptional regulatory network for lipid metabolism in yeast, which involves the combinatorial and complementary regulation by multiple transcription factors. We anticipate that our work will provide insights into transcription factor binding dynamics that will prove useful for the understanding of transcription regulatory networks. IMPORTANCE Transcription factors play a crucial role in the regulation of gene expression and adaptation to different environments. To better understand the underlying roles of these adaptations, we performed experiments that give us high-resolution binding of transcription factors to their targets. We investigated five transcription factors involved in lipid metabolism in yeast, and we discovered multiple novel targets and condition-specific responses that allow us to draw a better regulatory map of the lipid metabolism.


2012 ◽  
Vol 302 (3) ◽  
pp. G277-G286 ◽  
Author(s):  
Anders Krüger Olsen ◽  
Mette Boyd ◽  
Erik Thomas Danielsen ◽  
Jesper Thorvald Troelsen

Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been applied to analyze known transcription factors and their interacting regulatory DNA elements in the intestine. The intestine is an example of a dynamic tissue where stem cells in the crypt proliferate and undergo a differentiation process toward the villus. During this differentiation process, specific regulatory networks of transcription factors are activated to target specific genes, which determine the intestinal cell fate. The expanding genomewide mapping of transcription factor binding sites and construction of transcriptional regulatory networks provide new insight into how intestinal differentiation occurs. This review summarizes the current overview of the transcriptional regulatory networks driving epithelial differentiation in adult intestine. The novel technologies that have been implied to study these networks are presented and their prospects for implications in future research are also addressed.


2008 ◽  
Vol 414 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Lezanne Ooi ◽  
Ian C. Wood

The nervous system contains a multitude of cell types which are specified during development by cascades of transcription factors acting combinatorially. Some of these transcription factors are only active during development, whereas others continue to function in the mature nervous system to maintain appropriate gene-expression patterns in differentiated cells. Underpinning the function of the nervous system is its plasticity in response to external stimuli, and many transcription factors are involved in regulating gene expression in response to neuronal activity, allowing us to learn, remember and make complex decisions. Here we review some of the recent findings that have uncovered the molecular mechanisms that underpin the control of gene regulatory networks within the nervous system. We highlight some recent insights into the gene-regulatory circuits in the development and differentiation of cells within the nervous system and discuss some of the mechanisms by which synaptic transmission influences transcription-factor activity in the mature nervous system. Mutations in genes that are important in epigenetic regulation (by influencing DNA methylation and post-translational histone modifications) have long been associated with neuronal disorders in humans such as Rett syndrome, Huntington's disease and some forms of mental retardation, and recent work has focused on unravelling their mechanisms of action. Finally, the discovery of microRNAs has produced a paradigm shift in gene expression, and we provide some examples and discuss the contribution of microRNAs to maintaining dynamic gene regulatory networks in the brain.


Author(s):  
Nawrah Khader ◽  
Virlana M Shchuka ◽  
Oksana Shynlova ◽  
Jennifer A Mitchell

Abstract The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for fetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1 (AP-1), progesterone receptors (PRs), estrogen receptors (ERs), and nuclear factor kappa B (NF-κB), as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour- associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 40 ◽  
Author(s):  
Antonia Denis ◽  
Mario Alberto Martínez-Núñez ◽  
Silvia Tenorio-Salgado ◽  
Ernesto Perez-Rueda

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf5733
Author(s):  
Rui Lopes ◽  
Kathleen Sprouffske ◽  
Caibin Sheng ◽  
Esther C. H. Uijttewaal ◽  
Adriana Emma Wesdorp ◽  
...  

Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.


Development ◽  
1989 ◽  
Vol 107 (2) ◽  
pp. 189-200 ◽  
Author(s):  
U. Grossniklaus ◽  
H.J. Bellen ◽  
C. Wilson ◽  
W.J. Gehring

We have stained the ovaries of nearly 600 different Drosophila strains carrying single copies of a P-element enhancer detector. This transposon detects neighbouring genomic transcriptional regulatory sequences by means of a beta-galactosidase reporter gene. Numerous strains are stained in specific cells and at specific stages of oogenesis and provide useful ovarian markers for cell types that in some cases have not previously been recognized by morphological criteria. Since recent data have suggested that a substantial number of the regulatory elements detected by enhancer detection control neighbouring genes, we discuss the implications of our results concerning ovarian gene expression patterns in Drosophila. We have also identified a small number of insertion-linked recessive mutants that are sterile or lead to ovarian defects. We observe a strong correlation with specific germ line staining patterns in these strains, suggesting that certain patterns are more likely to be associated with female sterile genes than others. On the basis of our results, we suggest new strategies, which are not primarily based on the generation of mutants, to screen for and isolated female sterile genes.


2019 ◽  
Vol 36 (6) ◽  
pp. 1663-1667 ◽  
Author(s):  
Qingsu Cheng ◽  
Mina Khoshdeli ◽  
Bradley S Ferguson ◽  
Kosar Jabbari ◽  
Chongzhi Zang ◽  
...  

Abstract Motivation Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. Results 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document