scholarly journals Environmentally-induced epigenetic conversion of a piRNA cluster

2018 ◽  
Author(s):  
Karine Casier ◽  
Valérie Delmarre ◽  
Nathalie Gueguen ◽  
Catherine Hermant ◽  
Elise Viodé ◽  
...  

ABSTRACTTransposable element (TE) activity is repressed in animal gonads by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by specific loci made of TEs insertions and fragments. Current models propose that these loci are functionally defined by the maternal inheritance of piRNAs produced during the previous generation, raising the question of their first activation in the absence of piRNAs. Taking advantage of an inactive cluster of P-element derived transgene insertions, we show here that raising flies at high temperature (29°C) instead of 25°C results in a rare but invasive epigenetic conversion of this locus into an active piRNAs producing one. The newly acquired epigenetic state is stable over many generations even when flies are switch back to 25°C. The silencing capacities, piRNA production and chromatin modifications of the cluster are all identical whether conversion occurred by maternal piRNA inheritance or by high temperature. We also demonstrate that in addition to high temperature, a single homologous transgene inserted elsewhere in the genome is required to activate the locus. We thus have identified a minimal system of three components to create a stable piRNA producing locus: 1) a locus with multiple TE derived sequences; 2) an euchromatic copy of these sequences and 3) elevated temperature. Altogether, these data report the first case of the establishment of an active piRNA cluster by environmental changes. It highlights how such variations of species natural habitat can become heritable and shape their epigenome.SIGNIFICANCE STATEMENTRecently, we have witnessed great progress in our understanding of the silencing of Transposable Elements (TEs) by piRNAs, a class of small RNAs produced by piRNA clusters. At each generation, piRNA clusters are supposed to be activated by homologous piRNAs inherited from the mother raising the question of the making of the first piRNAs. Here, we report the birth of a stable and functional piRNA cluster induced by high temperature without maternal inheritance of homologous piRNAs. We propose a minimal system to create a piRNA cluster: a sufficient number of repeated sequences, a euchromatic copy of these sequences and an increase in the production of antisense RNA.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karine Casier ◽  
Valérie Delmarre ◽  
Nathalie Gueguen ◽  
Catherine Hermant ◽  
Elise Viodé ◽  
...  

Transposable element (TE) activity is repressed in animal gonads by PIWI-interacting RNAs (piRNAs) produced by piRNA clusters. Current models in flies propose that germinal piRNA clusters are functionally defined by the maternal inheritance of piRNAs produced during the previous generation. Taking advantage of an inactive, but ready to go, cluster of P-element derived transgene insertions in Drosophila melanogaster, we show here that raising flies at high temperature (29°C) instead of 25°C triggers the stable conversion of this locus from inactive into actively producing functional piRNAs. The increase of antisense transcripts from the cluster at 29°C combined with the requirement of transcription of euchromatic homologous sequences, suggests a role of double stranded RNA in the production of de novo piRNAs. This report describes the first case of the establishment of an active piRNA cluster by environmental changes in the absence of maternal inheritance of homologous piRNAs.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter</xref>).


2004 ◽  
Vol 39 (7) ◽  
pp. 615-623 ◽  
Author(s):  
Rafael Vasconcelos Ribeiro ◽  
Mauro Guida dos Santos ◽  
Gustavo Maia Souza ◽  
Eduardo Caruso Machado ◽  
Ricardo Ferraz de Oliveira ◽  
...  

Photosynthetic responses to daily environmental changes were studied in bean (Phaseolus vulgaris L.) genotypes 'Carioca', 'Ouro Negro', and Guarumbé. Light response curves of CO2 assimilation and stomatal conductance (g s) were also evaluated under controlled (optimum) environmental condition. Under this condition, CO2 assimilation of 'Carioca' was not saturated at 2,000 µmol m-2 s-1, whereas Guarumbé and 'Ouro Negro' exhibited different levels of light saturation. All genotypes showed dynamic photoinhibition and reversible increase in the minimum chlorophyll fluorescence yield under natural condition, as well as lower photosynthetic capacity when compared with optimum environmental condition. Since differences in g s were not observed between natural and controlled conditions for Guarumbé and 'Ouro Negro', the lower photosynthetic capacity of these genotypes under natural condition seems to be caused by high temperature effects on biochemical reactions, as suggested by increased alternative electron sinks. The highest g s values of 'Carioca' were observed at controlled condition, providing evidences that reduction of photosynthetic capacity at natural condition was due to low g s in addition to the high temperature effects on the photosynthetic apparatus. 'Carioca' exhibited the highest photosynthetic rates under optimum environmental condition, and was more affected by daily changes of air temperature and leaf-to-air vapor pressure difference.


2020 ◽  
Vol 8 (6) ◽  
pp. 796
Author(s):  
Ivana Cavello ◽  
María Sofía Urbieta ◽  
Sebastián Cavalitto ◽  
Edgardo Donati

Geothermal areas are the niches of a rich microbial diversity that is not only part of the intangible patrimony of a country but also the source of many microbial species with potential biotechnological applications. Particularly, microbial species in geothermal areas in Argentina have been scarcely explored regarding their possible biotechnological uses. The purpose of this work was to explore the proteolytic and keratinolytic enzymatic potential of microorganisms that inhabit in the Domuyo geothermal area in the Neuquén Province. To this end, we did enrichment cultures from two high-temperature natural samples in mineral media only supplemented with whole chicken feathers. After the isolation and the phylogenetic and morphologic characterization of different colonies, we obtained a collection of Bacillus cytotoxicus isolates, a species with no previous report of keratinolytic activity and only reported in rehydrated meals connected with food poisoning outbreaks. Its natural habitat has been unknown up to now. We characterized the proteolytic and keratinolytic capacities of the B. cytotoxicus isolates in different conditions, which proved to be remarkably high compared with those of other similar species. Thus, our work represents the first report of the isolation as well as the keratinolytic capacity characterization of strains of B. cytotixicus obtained from a natural environment.


2019 ◽  
Vol 98 (12) ◽  
pp. 1315-1323
Author(s):  
L. Lei ◽  
Y. Yang ◽  
Y. Yang ◽  
S. Wu ◽  
X. Ma ◽  
...  

The oral cavity contains a distinct habitat that supports diverse bacterial flora. Recent observations have provided additional evidence that sRNAs are key regulators of bacterial physiology and pathogenesis. These sRNAs have been divided into 5 functional groups: cis-encoded RNAs, trans-encoded RNAs, RNA regulators of protein activity, bacterial CRISPR (clustered regularly interspaced short palindromic repeat) RNAs, and a novel category of miRNA-size small RNAs (msRNAs). In this review, we discuss a critical group of key commensal and opportunistic oral pathogens. In general, supragingival bacterial sRNAs function synergistically to fine-tune the regulation of cellular processes and stress responses in adaptation to environmental changes. Particularly in the cariogenic bacteria Streptococcus mutans, both the antisense vicR RNA and msRNA1657 can impede the metabolism of bacterial exopolysaccharides, prevent biofilm formation, and suppress its cariogenicity. In Enterococcus faecalis, selected sRNAs control the expression of proteins involved in diverse cellular processes and stress responses. In subgingival plaques, sRNAs from periodontal pathogens can function as novel bacterial signaling molecules that mediate bacterial-human interactions in periodontal homeostasis. In Porphyromonas gingivalis, the expression profiles of putative sRNA101 and sRNA42 were found to respond to hemin availability after hemin starvation. Regarding Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a major periodontal pathogen associated with aggressive periodontitis, the predicted sRNAs interact with several virulence genes, including those encoding leukotoxin and cytolethal distending toxin. Furthermore, in clinical isolates, these associated RNAs could be explored not only as potential biomarkers for oral disease monitoring but also as alternative types of regulators for drug design. Thus, this emerging subspecialty of bacterial regulatory RNAs could reshape our understanding of bacterial gene regulation from their key roles of endogenous regulatory RNAs to their activities in pathologic processes.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 449
Author(s):  
Eirini Christaki ◽  
Panagiotis Dimitriou ◽  
Katerina Pantavou ◽  
Georgios K. Nikolopoulos

Water ecosystems can be rather sensitive to evolving or sudden changes in weather parameters. These changes can result in alterations in the natural habitat of pathogens, vectors, and human hosts, as well as in the transmission dynamics and geographic distribution of infectious agents. However, the interaction between climate change and infectious disease is rather complicated and not deeply understood. In this narrative review, we discuss climate-driven changes in the epidemiology of Vibrio species-associated diseases with an emphasis on cholera. Changes in environmental parameters do shape the epidemiology of Vibrio cholerae. Outbreaks of cholera cause significant disease burden, especially in developing countries. Improved sanitation systems, access to clean water, educational strategies, and vaccination campaigns can help control vibriosis. In addition, real-time assessment of climatic parameters with remote-sensing technologies in combination with robust surveillance systems could help detect environmental changes in high-risk areas and result in early public health interventions that can mitigate potential outbreaks.


Genome ◽  
1992 ◽  
Vol 35 (6) ◽  
pp. 1050-1053 ◽  
Author(s):  
Simon T. Bennett ◽  
Michael D. Bennett

Mean 2C DNA amounts varied by 35.6%, ranging from 7.52 to 10.20 pg, between 10 populations of the grass Milium effusum L. Such intraspecific variation occurred despite a constant chromosome number (2n = 28) and no obvious differences in karyotype. Plants originating from botanic garden populations growing in cultivation had significantly (P < 0.001) larger DNA amounts than plants collected from wild populations. Moreover, variation in DNA amount within either the "cultivated" or the "wild" groups was not significant. As the environment in which plants are kept in botanic gardens is clearly different to the natural habitat for M. effusum, it seems likely that the difference in nuclear DNA amount is causally related, perhaps through its nucleotypic effects, to microclimate adaptation. These results suggest that at least some genotypes of M. effusum are fluid and sensitive to environmental change. Such data may have broad practical importance regarding plant responses to various environmental changes such as a nuclear winter and global warming, and implications for plant conservation and reintroduction. Milium effusum is a potentially useful plant material for studying the nature of intraspecific variation in DNA amount.Key words: Milium effusum, nuclear DNA amounts, nucleotype, environmental adaptation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elena Stachew ◽  
Thibaut Houette ◽  
Petra Gruber

The continuous increase in population and human migration to urban and coastal areas leads to the expansion of built environments over natural habitats. Current infrastructure suffers from environmental changes and their impact on ecosystem services. Foundations are static anchoring structures dependent on soil compaction, which reduces water infiltration and increases flooding. Coastal infrastructure reduces wave action and landward erosion but alters natural habitat and sediment transport. On the other hand, root systems are multifunctional, resilient, biological structures that offer promising strategies for the design of civil and coastal infrastructure, such as adaptivity, multifunctionality, self-healing, mechanical and chemical soil attachment. Therefore, the biomimetic methodology is employed to abstract root strategies of interest for the design of building foundations and coastal infrastructures that prevent soil erosion, anchor structures, penetrate soils, and provide natural habitat. The strategies are described in a literature review on root biology, then these principles are abstracted from their biological context to show their potential for engineering transfer. After a review of current and developing technologies in both application fields, the abstracted strategies are translated into conceptual designs for foundation and coastal engineering. In addition to presenting the potential of root-inspired designs for both fields, this paper also showcases the main steps of the biomimetic methodology from the study of a biological system to the development of conceptual technical designs. In this way the paper also contributes to the development of a more strategic intersection between biology and engineering and provides a framework for further research and development projects.


2017 ◽  
Author(s):  
Syaiful Eddy ◽  
Andy Mulyana ◽  
M.Sc. Prof. Dr. Iskhaq Iskandar ◽  
M.Si. Dr. Moh. Rasyid Ridho

Mangrove forests are type of salt tolerant vegetations, living in tidal zones in tropical and subtropical coastal areas with unique ecosystem that have a strategic function as a connector and counterweight of terrestrial and marine ecosystems. These forests as a whole is considered a productive ecosystem and it have complex functions, such as physical functions, biological functions and socio-economic functions. Fishery resources of mangrove forests are very productive, both quantitatively and qualitatively, because the mangrove forests act as the natural habitat (spawning, nursery and feeding grounds) for various species of fish, shrimps and crabs, as well as a source of germplasm and genetic pool. Mangrove forests also provide valuable ecosystem services to coastal communities, tourist attractions, nature conservation, education and research. However, these ecosystems are fragile because it is very sensitive to environmental changes, usually because anthropogenic influences; therefore, it is difficult to be restored. In addition, these ecosystems are so openly accessible that easily exploited by humans; this can reduce its quality and quantity. Local communities who use mangrove forests and their resources may have considerable botanical and ecological knowledge about their forests. Silvofishery techniques in aquaculture are very suitable for community-based mangrove forests conservation efforts. Silvofishery is an integrated model that considers both economically benefit and conservation.


2021 ◽  
Author(s):  
◽  
Lauren Fracasso

<p>Members of the phylum Cnidaria, such as corals and sea anemones, often form mutualistic endosymbiotic relationships with photosynthetic dinoflagellates that are founded upon a reciprocal exchange of nutrients. In this exchange, the cnidarian host provides its symbionts with nutrients derived through respiration, heterotrophy, and the environment, while the symbionts provide their host with products of photosynthesis. The energy derived from this exchange is utilized for metabolism, growth, and reproduction; alternatively, it can be accumulated into storage bodies for use during nutritional shortages or stress. Cnidarian-algal symbioses can be found throughout the world and vary in their sensitivity to stress, with environmental changes playing a prominent role in inducing stress. Tropical cnidarian-dinoflagellate symbioses are particularly vulnerable to temperature change, with increases of just 1-2℃ above their upper thermal limit often resulting in bleaching (the breakdown of symbiosis via symbiont expulsion). In contrast, temperate cnidarian-dinoflagellate symbioses exhibit far greater tolerance to such environmental stressors, and are rarely seen to bleach in the field. It is unclear how temperate cnidarian-dinoflagellate symbioses achieve this resilience and stability.   This thesis examines the effects of changes in temperature and irradiance on the content of energy-rich cellular storage products in the temperate sea anemone Anthopleura aureoradiata and its dinoflagellate endosymbionts (family: Symbiodiniaceae), in order to assess the potential of these compounds in contributing to the overall stability of the symbiosis. In particular, symbiont density and chlorophyll content (as well as photosynthetic efficiency, for experimental study only), in addition to both symbiont and host protein content, served as indicators of physiological health, and were then related to the accumulation of cellular storage products such as lipids and carbohydrates.  A field study was conducted in which a population of A. aureoradiata was sampled from Wellington Harbor, New Zealand, at monthly intervals for one year. Despite monthly and seasonal variability in the physiological parameters measured, the symbiosis remained functional and stable (i.e. no signs of bleaching) throughout the year. The greatest inter-seasonal variation occurred in the symbiont cell-specific carbohydrate content, which decreased significantly between spring and summer. In contrast, host lipid content exhibited less variation than all other symbiont and host storage products. These observations suggest that symbiont carbohydrate stores are primarily utilized to sustain the symbiosis during times of seasonal environmental change (in this case, correlating with increased light and temperature during summer), while lipids may be kept in reserve. The robustness of this field population is expected; being a native species, A. aureoradiata is likely highly acclimated to the conditions that were observed throughout the year of this field study. A separate population of A. aureoradiata was subsequently acclimated to a moderate regime of temperature and irradiance, and then exposed to one of six treatments of different combined temperatures and irradiances (based on seasonal conditions in the Wellington Harbour), to establish their interactive effects on cellular storage product content. Specifically, three thermal regimes (low: 9±1°C, moderate: 14.5±1°C, high: 21±1°C), each at a low (70±10 µmol photons m-2 s-1) or high (145±15 µmol photons m-2 s-1) irradiance, were maintained for a total of sixteen weeks. Unlike in the field, a breakdown in symbiosis was observed; photo-physiological dysfunction of the symbiosis was observed within four weeks in all anemones exposed to low temperature at both irradiances, and bleaching was apparent by week eight. This response likely arose from a combination of the rapid decrease in temperature experienced upon distribution into the low-temperature tank, as well as the prolonged nature of the conditions in the experiment, which would not be experienced in the field. In contrast, the anemones maintained at both irradiances in the moderate and high temperature treatments maintained a stable symbiosis, suggesting that these conditions were not extreme enough to cause notable stress. In fact, anemones kept under both low and high irradiance within the moderate temperature treatment increased in symbiont density and exhibited the highest host lipid content relative to the other treatments, suggesting that this treatment was near-optimal for the symbiosis. Perhaps interestingly, both the moderate and high temperature treatments induced significant reductions in symbiont-specific protein, lipid, and carbohydrate content, while host storage products decreased less drastically. This observation suggests increased utilization of symbiont storage products to maintain a healthy symbiosis under these experimental conditions.   My findings are consistent with previous reports of seasonal stability in temperate cnidarian-dinoflagellate symbioses; moreover, I provide experimental evidence for the utilization of symbiont storage products as a means of maintaining symbiosis stability, though this was less apparent in the field. Although recent studies have made great progress in identifying patterns of stability in temperate cnidarian-dinoflagellate symbioses, additional studies are required to build a more comprehensive picture of the mechanisms involved. Future studies would benefit from increased frequency of field sampling, including assessments of nutrient availability and host reproductive cycles, to better understand the monthly and seasonal variability in the intracellular storage product use observed in the field. Nevertheless, results of this study contribute to an improved understanding of the physiology and remarkable stability of temperate cnidarian-dinoflagellate symbioses, with implications for predictions of how they might respond to future climate change scenarios.</p>


2011 ◽  
Vol 8 (2) ◽  
pp. 4-7
Author(s):  
Eleonora Melnik

The need in development of patriotism among European countries’ citizens have objective (environmental changes, ecological and economic crisis, migration process, unequal distribu-tion of labour force) and subjective reasons that is developmental peculiarities of person’s subjective features (personal ambitions, national identity, connections with nature and other people). These reasons determine paths of patriotism development in each country. Patriot-ism in the meaning of “attachment of people (person) to their place of birth, place of living and its’ arrangement” is one of the most adequate phenomena in contemporaneity. Natural sciences research natural habitat of people and their cultural peculiarities. The use of innova-tive approach to understanding of “patriotism” in this context will provide reconstruction of fading feelings, attitudes and actions in the environment in person’s consciousness, it will also help to encourage them to create prosperous material and spiritual living conditions in their place of birth and in the place where they live and will live in the future. Natural sciences can act as basic sciences for school-children helping them to study the nature of their place of living. Educational standards of different countries include “Environmental study” in the ed-ucational programme of elementary school. The content of this school subject consists of two components - natural sciences (revealing characteristics and conditions of the environment) and social sciences (giving the reason for creating person’s relationships with the environ-ment). Using this integrative approach the teacher provides complex study of the word and person in all his or her diverse connections for elementary school children. Key words: natural science education, patriotism, pedagogical orientation.


Sign in / Sign up

Export Citation Format

Share Document