scholarly journals Ezetimibe inhibits Dengue virus infection in Huh-7 cells by blocking the cholesterol transporter Niemann–Pick C1-like 1 receptor

2018 ◽  
Author(s):  
Juan Fidel Osuna-Ramos ◽  
José Manuel Reyes-Ruiz ◽  
Patricia Bautista-Carbajal ◽  
Noe Farfán-Morales ◽  
Margot Cervantes-Salazar ◽  
...  

AbstractDespite the importance of Dengue virus (DENV) infection in human health, there is not a fully effective vaccine or antiviral treatment against the infection. Since lipids such as cholesterol are required during DENV infection, its uptake and synthesis are increased in infected cells. Ezetimibe is an FDA-approved drug that reduces cholesterol uptake in humans by inhibiting the endocytosis through Niemman-Pick C1-Like 1 (NPC1L1) receptor, expressed on the membrane of enterocytes and hepatocytes. Our results indicate that an increase in the amount of NPC1L1 occurs on the surface of Huh-7 cells during DENV infection, which correlates with an increase in cholesterol levels. Blockage of NPC1L1 with ezetimibe in concentrations up to 50 μM does not reduce cell viability but diminished total cellular cholesterol, the percentage of infected cells, viral yield, viral RNA and protein synthesis without affecting DENV binding and/or entry to Huh-7 cells. Moreover, ezetimibe inhibited DENV replicative complex formation and lipid droplets accumulation. All these results indicate that ezetimibe is an excellent drug to inhibit DENV infection and confirm that cholesterol is a key target to inhibit viral infection.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Tristan X. Jordan ◽  
Glenn Randall

ABSTRACT Robust dengue virus (DENV) replication requires lipophagy, a selective autophagy that targets lipid droplets. The autophagic mobilization of lipids leads to increased β-oxidation in DENV-infected cells. The mechanism by which DENV induces lipophagy is unknown. Here, we show that infection with DENV activates the metabolic regulator 5′ adenosine-monophosphate activated kinase (AMPK), and that the silencing or pharmacological inhibition of AMPK activity decreases DENV replication and the induction of lipophagy. The activity of the mechanistic target of rapamycin complex 1 (mTORC1) decreases in DENV-infected cells and is inversely correlated with lipophagy induction. Constitutive activation of mTORC1 by depletion of tuberous sclerosis complex 2 (TSC2) inhibits lipophagy induction in DENV-infected cells and decreases viral replication. While AMPK normally stimulates TSC2-dependent inactivation of mTORC1 signaling, mTORC1 inactivation is independent of AMPK activation during DENV infection. Thus, DENV stimulates and requires AMPK signaling as well as AMPK-independent suppression of mTORC1 activity for proviral lipophagy. IMPORTANCE Dengue virus alters host cell lipid metabolism to promote its infection. One mechanism for altered metabolism is the induction of a selective autophagy that targets lipid droplets, termed lipophagy. Lipophagy mobilizes lipid stores, resulting in enhanced β-oxidation and viral replication. We show here that DENV infection activates and requires the central metabolic regulator AMPK for its replication and the induction of lipophagy. This is required for the induction of lipophagy, but not basal autophagy, in DENV-infected cells.



2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Sheila Cabezas ◽  
Gustavo Bracho ◽  
Amanda L. Aloia ◽  
Penelope J. Adamson ◽  
Claudine S. Bonder ◽  
...  

ABSTRACTSevere dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infectionin vitrowere investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCEDengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells)in vivo. Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.



2021 ◽  
Author(s):  
Brenda Ramírez-Aguero ◽  
Javier Serrato-Salas ◽  
José Luis Montiel-Hernández ◽  
Judith González-Christen

AbstractSeveral pathogenic mechanisms have been linked to the severity of dengue virus infection, like viral cytotoxicity, underlying host genetics and comorbidities such as diabetes and dyslipidemia. It has been observed that patients with severe manifestations develop an uncontrolled immune response, with an increase in pro-inflammatory cytokines such as TNF, IL-1β, IL-8, IL-6 and chemokines that damage the human microvascular endothelium, and also in anti-inflammatory cytokines IL-4, IL-10 and TGF-β1. The role of TGF-β1 on dengue is not clear; few studies have been published, and most of them from patient sera data, with both protective and pathological roles have described. The aim of this study was to evaluate the ability of TGF-β1 to regulate the secretion of IL-1β in macrophages infected by DENV using THP-1 cells treated with recombinant TGF-β1 before or after DENV infection. By RT-PCR we did not observe a difference in IL-1β expression between infected cells pretreated with TGF-β1 and those that were not. However, secretion of IL-1β was reduced only in cells stimulated with TGF-β1 before infection, and not in those treated 2 hours post-infection. TGF-β1 receptor blockage with SB505124 inhibitor, prior to the addition of TGF-β1 and infection, abrogated the inhibitory effect of TGF-β1. Our results suggest that DENV could regulate the function of TGF-β1 on macrophages. This negative regulation of the TGF-β1 pathway could be used by DENV to evade the immune response and could contribute to the immunopathology.



Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1246
Author(s):  
Chit Care ◽  
Wannapa Sornjai ◽  
Janejira Jaratsittisin ◽  
Atitaya Hitakarun ◽  
Nitwara Wikan ◽  
...  

Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.



Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1284
Author(s):  
Jorge G. G. Ferreira ◽  
Sandra G. Gava ◽  
Eneida S. Oliveira ◽  
Izabella C. A. Batista ◽  
Gabriel da R. Fernandes ◽  
...  

Dengue is an acute viral disease caused by Dengue virus (DENV) and is considered to be the most common arbovirus worldwide. The clinical characteristics of dengue may vary from asymptomatic to severe complications and severe organ impairment, particularly affecting the liver. Dengue treatment is palliative with acetaminophen (APAP), usually known as Paracetamol, being the most used drug aiming to relieve the mild symptoms of dengue. APAP is a safe and effective drug but, like dengue, can trigger the development of liver disorders. Given this scenario, it is necessary to investigate the effects of combining these two factors on hepatocyte homeostasis. Therefore, this study aimed to evaluate the molecular changes in hepatocytes resulting from the association between DENV infection and treatment with sub-toxic APAP concentrations. Using an in vitro experimental model of DENV-2 infected hepatocytes (AML-12 cells) treated with APAP, we evaluated the influence of the virus and drug association on the transcriptome of these hepatocytes by RNA sequencing (RNAseq). The virus–drug association was able to induce changes in the gene expression profile of AML-12 cells and here we highlight and explore these changes and its putative influence on biological processes for cellular homeostasis.



Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1267
Author(s):  
Aussara Panya ◽  
Nunghathai Sawasdee ◽  
Pucharee Songprakhon ◽  
Yingmanee Tragoolpua ◽  
Siriphorn Rotarayanont ◽  
...  

Dengue virus (DENV) infection has become a critically important globally prevalent infectious disease, especially in tropical and subtropical countries. Since neither currently exists, there is an urgent need for an effective vaccine to prevent, and a specific drug to treat DENV infection. Therapeutic peptides represent an attractive alternative for development into anti-DENV drugs due to their safety and their diverse biological and chemical properties. We recently reported novel bioactive peptides extracted from the Asian medicinal plant Acacia catechu that efficiently inhibited all four DENV serotypes. In this study, we investigated the anti-DENV activity of a synthetic bioactive peptide derived from this plant. The most effective peptide (designated Pep-RTYM) inhibited DENV infection with a half-maximal inhibition concentration value of 7.9 μM. Time-of-addition study demonstrated that Pep-RTYM interacted with DENV particles and inhibited cellular entry. Pep-RTYM at 50 μM significantly reduced DENV production in Vero-kidney epithelial cells about 1000-fold, but it could decrease the virus production in Huh7 hepatocyte cells approximately 40-fold. Binding of Pep-RTYM to DENV particles may prevent virus interaction with cellular receptor and subsequent virus entry. This finding suggests a potential role of Pep-RTYM in the development of a novel anti-DENV drug.



2014 ◽  
Vol 43 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Natapong Jupatanakul ◽  
Shuzhen Sim ◽  
George Dimopoulos


2018 ◽  
Vol 160 ◽  
pp. 151-164 ◽  
Author(s):  
Juan Fidel Osuna-Ramos ◽  
José Manuel Reyes-Ruiz ◽  
Patricia Bautista-Carbajal ◽  
Margot Cervantes-Salazar ◽  
Carlos Noe Farfan-Morales ◽  
...  


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Gilberto A Santiago ◽  
Tyler M Sharp ◽  
Eli Rosenberg ◽  
Iris I Sosa Cardona ◽  
Luisa Alvarado ◽  
...  

Abstract To evaluate potential enhancement of Zika virus (ZIKV) infection among patients with prior dengue virus (DENV) infection, we compared loads of viral RNA among patients infected with ZIKV (n = 1070), DENV-2 (n = 312), or DENV-3 (n = 260). Compared to patients without prior DENV infection, patients with prior DENV infection had significantly higher mean loads of viral RNA if infected with DENV-2 (10.6 vs 11.6 log10 GCE/mL, respectively; t test, P < .0001) or DENV-3 (10.3 vs 10.9 log10 GCE/mL; P < .0001), but not ZIKV (4.7 vs 4.7 log10 GCE/mL; P = .959). These findings provide evidence against in vivo enhancement of ZIKV by anti-DENV antibodies.



2020 ◽  
Vol 222 (4) ◽  
pp. 590-600 ◽  
Author(s):  
Paulina Andrade ◽  
Parnal Narvekar ◽  
Magelda Montoya ◽  
Daniela Michlmayr ◽  
Angel Balmaseda ◽  
...  

Abstract Background The 4 antigenically distinct serotypes of dengue virus (DENV) share extensive homology with each other and with the closely related Zika flavivirus (ZIKV). The development of polyclonal memory B cells (MBCs) to the 4 DENV serotypes and ZIKV during DENV infection is not fully understood. Methods In this study, we analyzed polyclonal MBCs at the single-cell level from peripheral blood mononuclear cells collected ~2 weeks or 6–7 months postprimary or postsecondary DENV infection from a pediatric hospital-based study in Nicaragua using a Multi-Color FluoroSpot assay. Results Dengue virus elicits robust type-specific and cross-reactive MBC responses after primary and secondary DENV infection, with a significantly higher cross-reactive response in both. Reactivity to the infecting serotype dominated the total MBC response. Although the frequency and proportion of type-specific and cross-reactive MBCs were comparable between primary and secondary DENV infections, within the cross-reactive response, the breadth of MBC responses against different serotypes was greater after secondary DENV infection. Dengue virus infection also induced cross-reactive MBC responses recognizing ZIKV, particularly after secondary DENV infection. Conclusions Overall, our study sheds light on the polyclonal MBC response to DENV and ZIKV in naive and DENV-preimmune subjects, with important implications for natural infections and vaccine development.



Sign in / Sign up

Export Citation Format

Share Document