scholarly journals Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy

2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Tristan X. Jordan ◽  
Glenn Randall

ABSTRACT Robust dengue virus (DENV) replication requires lipophagy, a selective autophagy that targets lipid droplets. The autophagic mobilization of lipids leads to increased β-oxidation in DENV-infected cells. The mechanism by which DENV induces lipophagy is unknown. Here, we show that infection with DENV activates the metabolic regulator 5′ adenosine-monophosphate activated kinase (AMPK), and that the silencing or pharmacological inhibition of AMPK activity decreases DENV replication and the induction of lipophagy. The activity of the mechanistic target of rapamycin complex 1 (mTORC1) decreases in DENV-infected cells and is inversely correlated with lipophagy induction. Constitutive activation of mTORC1 by depletion of tuberous sclerosis complex 2 (TSC2) inhibits lipophagy induction in DENV-infected cells and decreases viral replication. While AMPK normally stimulates TSC2-dependent inactivation of mTORC1 signaling, mTORC1 inactivation is independent of AMPK activation during DENV infection. Thus, DENV stimulates and requires AMPK signaling as well as AMPK-independent suppression of mTORC1 activity for proviral lipophagy. IMPORTANCE Dengue virus alters host cell lipid metabolism to promote its infection. One mechanism for altered metabolism is the induction of a selective autophagy that targets lipid droplets, termed lipophagy. Lipophagy mobilizes lipid stores, resulting in enhanced β-oxidation and viral replication. We show here that DENV infection activates and requires the central metabolic regulator AMPK for its replication and the induction of lipophagy. This is required for the induction of lipophagy, but not basal autophagy, in DENV-infected cells.

2014 ◽  
Vol 89 (4) ◽  
pp. 2358-2366 ◽  
Author(s):  
Krystal A. Fontaine ◽  
Erica L. Sanchez ◽  
Roman Camarda ◽  
Michael Lagunoff

ABSTRACTViruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of theFlaviviridaefamily, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future.IMPORTANCEApproximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens.


2020 ◽  
Author(s):  
Felix Pahmeier ◽  
Christoper J Neufeldt ◽  
Berati Cerikan ◽  
Vibhu Prasad ◽  
Costantin Pape ◽  
...  

ABSTRACTPositive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of that are flaviviruses, such as dengue virus and Zika virus that cause millions of yearly infections and spread around the globe, and coronaviruses, such as SARS-CoV-2, which is the cause of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of virology research in determining mechanisms to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective interventions. Here, we describe the generation and characterization of a reporter system to visualize dengue virus and SARS-CoV-2 replication in live cells. The system is based on viral protease activity causing cleavage and nuclear translocation of an engineered fluorescent protein that is expressed in the infected cells. We show the suitability of the system for live cell imaging and visualization of single infected cells as well as for screening and testing of antiviral compounds. Given the modular building blocks, the system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCEReporter systems are useful tools for fast and quantitative visualization of viral replication and spread within a host cell population. Here we describe a reporter system that takes advantage of virus-encoded proteases that are expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the fluorescent protein translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Sheila Cabezas ◽  
Gustavo Bracho ◽  
Amanda L. Aloia ◽  
Penelope J. Adamson ◽  
Claudine S. Bonder ◽  
...  

ABSTRACTSevere dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infectionin vitrowere investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCEDengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells)in vivo. Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.


2015 ◽  
Vol 89 (15) ◽  
pp. 8026-8041 ◽  
Author(s):  
Philippe Metz ◽  
Abhilash Chiramel ◽  
Laurent Chatel-Chaix ◽  
Gualtiero Alvisi ◽  
Peter Bankhead ◽  
...  

ABSTRACTAutophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV.IMPORTANCEAutophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus.


2015 ◽  
Vol 89 (7) ◽  
pp. 3455-3470 ◽  
Author(s):  
Jing Zou ◽  
Xuping Xie ◽  
Qing-Yin Wang ◽  
Hongping Dong ◽  
Michelle Yueqi Lee ◽  
...  

ABSTRACTFlavivirus replication is mediated by a membrane-associated replication complex where viral membrane proteins NS2A, NS2B, NS4A, and NS4B serve as the scaffold for the replication complex formation. Here, we used dengue virus serotype 2 (DENV-2) as a model to characterize viral NS4A-NS4B interaction. NS4A interacts with NS4B in virus-infected cells and in cells transiently expressing NS4A and NS4B in the absence of other viral proteins. Recombinant NS4A and NS4B proteins directly bind to each other with an estimatedKd(dissociation constant) of 50 nM. Amino acids 40 to 76 (spanning the first transmembrane domain, consisting of amino acids 50 to 73) of NS4A and amino acids 84 to 146 (also spanning the first transmembrane domain, consisting of amino acids 101 to 129) of NS4B are the determinants for NS4A-NS4B interaction. Nuclear magnetic resonance (NMR) analysis suggests that NS4A residues 17 to 80 form two amphipathic helices (helix α1, comprised of residues 17 to 32, and helix α2, comprised of residues 40 to 47) that associate with the cytosolic side of endoplasmic reticulum (ER) membrane and helix α3 (residues 52 to 75) that transverses the ER membrane. In addition, NMR analysis identified NS4A residues that may participate in the NS4A-NS4B interaction. Amino acid substitution of these NS4A residues exhibited distinct effects on viral replication. Three of the four NS4A mutations (L48A, T54A, and L60A) that affected the NS4A-NS4B interaction abolished or severely reduced viral replication; in contrast, two NS4A mutations (F71A and G75A) that did not affect NS4A-NS4B interaction had marginal effects on viral replication, demonstrating the biological relevance of the NS4A-NS4B interaction to DENV-2 replication. Taken together, the study has provided experimental evidence to argue that blocking the NS4A-NS4B interaction could be a potential antiviral approach.IMPORTANCEFlavivirus NS4A and NS4B proteins are essential components of the ER membrane-associated replication complex. The current study systematically characterizes the interaction between flavivirus NS4A and NS4B. Using DENV-2 as a model, we show that NS4A interacts with NS4B in virus-infected cells, in cells transiently expressing NS4A and NS4B proteins, orin vitrowith recombinant NS4A and NS4B proteins. We mapped the minimal regions required for the NS4A-NS4B interaction to be amino acids 40 to 76 of NS4A and amino acids 84 to 146 of NS4B. NMR analysis revealed the secondary structure of amino acids 17 to 80 of NS4A and the NS4A amino acids that may participate in the NS4A-NS4B interaction. Functional analysis showed a correlation between viral replication and NS4A-NS4B interaction, demonstrating the biological importance of the NS4A-NS4B interaction. The study has advanced our knowledge of the molecular function of flavivirus NS4A and NS4B proteins. The results also suggest that inhibitors of the NS4A-NS4B interaction could be pursued for flavivirus antiviral development.


2021 ◽  
Author(s):  
Brenda Ramírez-Aguero ◽  
Javier Serrato-Salas ◽  
José Luis Montiel-Hernández ◽  
Judith González-Christen

AbstractSeveral pathogenic mechanisms have been linked to the severity of dengue virus infection, like viral cytotoxicity, underlying host genetics and comorbidities such as diabetes and dyslipidemia. It has been observed that patients with severe manifestations develop an uncontrolled immune response, with an increase in pro-inflammatory cytokines such as TNF, IL-1β, IL-8, IL-6 and chemokines that damage the human microvascular endothelium, and also in anti-inflammatory cytokines IL-4, IL-10 and TGF-β1. The role of TGF-β1 on dengue is not clear; few studies have been published, and most of them from patient sera data, with both protective and pathological roles have described. The aim of this study was to evaluate the ability of TGF-β1 to regulate the secretion of IL-1β in macrophages infected by DENV using THP-1 cells treated with recombinant TGF-β1 before or after DENV infection. By RT-PCR we did not observe a difference in IL-1β expression between infected cells pretreated with TGF-β1 and those that were not. However, secretion of IL-1β was reduced only in cells stimulated with TGF-β1 before infection, and not in those treated 2 hours post-infection. TGF-β1 receptor blockage with SB505124 inhibitor, prior to the addition of TGF-β1 and infection, abrogated the inhibitory effect of TGF-β1. Our results suggest that DENV could regulate the function of TGF-β1 on macrophages. This negative regulation of the TGF-β1 pathway could be used by DENV to evade the immune response and could contribute to the immunopathology.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1246
Author(s):  
Chit Care ◽  
Wannapa Sornjai ◽  
Janejira Jaratsittisin ◽  
Atitaya Hitakarun ◽  
Nitwara Wikan ◽  
...  

Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
M. J. Schultz ◽  
A. L. Tan ◽  
C. N. Gray ◽  
S. Isern ◽  
S. F. Michael ◽  
...  

ABSTRACTMosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacteriumWolbachia pipientisfrom supergroup A is a recent strategy employed to reduce the capacity for major vectors in theAedesmosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup BWolbachia wStri, isolated fromLaodelphax striatellus, was shown to inhibit multiple lineages of ZIKV inAedes albopictuscells. Here, we show thatwStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%.wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited bywStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry intowStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate inWolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis inwStri-infected cells. This study’s findings increase the potential for application ofwStri to block additional arboviruses and also identify specific blocks in viral infection caused byWolbachiacoinfection.IMPORTANCEDengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont,Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use ofWolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.


2021 ◽  
Author(s):  
gerson caraballo ◽  
Romel Rosales ◽  
Mercedes Viettri ◽  
Siyuan Ding ◽  
Harry B Greenberg ◽  
...  

Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. Approximately 14% of the 817 identified proteins coincide with interactomes obtained in vertebrate cells, including ontology groups of the oligosaccharide transferase complex, the chaperonin containing TCP-1, and nuclear import and export, vesicle localization and ribosomal proteins. Notably, other protein pathways such as epigenetic regulation and RNA silencing, not previously reported in vertebrate cells, were also found in the NS1 interactome in mosquito cells. Due to the novel interaction observed for NS1 and DIDO1 (Death Inducer-Obliterator 1), we further explored the role of DIDO1 in viral replication. Interactions between NS1 and DIDO1were corroborated in infected C6/36 and Aag2 cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression in C6/36 and Aag2 cells results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected C6/36 silenced for DIDO1, revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response and necessary for flavivirus replication. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication and add to the understanding of NS1 as a multifunctional protein.


Author(s):  
Steven S. Good ◽  
Ashleigh Shannon ◽  
Kai Lin ◽  
Adel Moussa ◽  
Justin G. Julander ◽  
...  

Every year millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro , requiring concentrations of 0.48 and 0.77 μM, respectively, to inhibit viral replication by 50% (EC 50 ) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested with EC 50 values ranging from 0.19 to 1.41 μM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 μM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats and monkeys. Furthermore, AT-9010 competed with guanosine triphosphate in RNA template-primer elongation assays with DENV-2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggest that it is a promising compound for the treatment of dengue virus infection, and is currently under evaluation in clinical studies.


Sign in / Sign up

Export Citation Format

Share Document