scholarly journals A Low-Cost Biological Agglutination Assay for Medical Diagnostic Applications

2018 ◽  
Author(s):  
Nicolas Kylilis ◽  
Pinpunya Riangrungroj ◽  
Hung-En Lai ◽  
Valencio Salema ◽  
Luis Ángel Fernández ◽  
...  

ABSTRACTAffordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing are key in addressing challenges in the diagnosis of medical conditions and for improving global health in general. Ideally, POC diagnostic tests should be highly selective for the biomarker, user-friendly, have a flexible design architecture and a low cost of production. Here we developed a novel agglutination assay based on wholeE. colicells surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design as a new diagnostic platform by the detection of a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations supported using straight-forward design rules and a mathematical model. Finally, we re-engineerE. colicells for the detection of a medically relevant biomarker by the display of two different antibodies against the human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for both field-testing in the developing world, emergency or disaster relief sites as well as routine medical testing and personalized medicine.

BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Marina S. Perez-Plazola ◽  
Erika A. Tyburski ◽  
Luke R. Smart ◽  
Thad A. Howard ◽  
Amanda Pfeiffer ◽  
...  

Abstract Background Severe anemia is common and frequently fatal for hospitalized patients in limited-resource settings. Lack of access to low-cost, accurate, and rapid diagnosis of anemia impedes the delivery of life-saving care and appropriate use of the limited blood supply. The WHO Haemoglobin Colour Scale (HCS) is a simple low-cost test but frequently inaccurate. AnemoCheck-LRS (limited-resource settings) is a rapid, inexpensive, color-based point-of-care (POC) test optimized to diagnose severe anemia. Methods Deidentified whole blood samples were diluted with plasma to create variable hemoglobin (Hb) concentrations, with most in the severe (≤ 7 g/dL) or profound (≤ 5 g/dL) anemia range. Each sample was tested with AnemoCheck-LRS and WHO HCS independently by three readers and compared to Hb measured by an electronic POC test (HemoCue 201+) and commercial hematology analyzer. Results For 570 evaluations within the limits of detection of AnemoCheck-LRS (Hb ≤ 8 g/dL), the average difference between AnemoCheck-LRS and measured Hb was 0.5 ± 0.4 g/dL. In contrast, the WHO HCS overestimated Hb with an absolute difference of 4.9 ± 1.3 g/dL for samples within its detection range (Hb 4–14 g/dL, n = 405). AnemoCheck-LRS was much more sensitive (92%) for the diagnosis of profound anemia than WHO HCS (22%). Conclusions AnemoCheck-LRS is a rapid, inexpensive, and accurate POC test for anemia. AnemoCheck-LRS is more accurate than WHO HCS for detection of low Hb levels, severe anemia that may require blood transfusion. AnemoCheck-LRS should be tested prospectively in limited-resource settings where severe anemia is common, to determine its utility as a screening tool to identify patients who may require transfusion.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 625 ◽  
Author(s):  
Elmer Ccopa Rivera ◽  
Jonathan J. Swerdlow ◽  
Rodney L. Summerscales ◽  
Padma P. Tadi Uppala ◽  
Rubens Maciel Filho ◽  
...  

Understanding relationships among multimodal data extracted from a smartphone-based electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care diagnostic devices. In this work, artificial intelligence (AI) algorithms such as random forest (RF) and feedforward neural network (FNN) are used to quantitatively investigate the relationships between the concentration of   Ru ( bpy ) 3 2 + luminophore and its experimentally measured ECL and electrochemical data. A smartphone-based ECL sensor with   Ru ( bpy ) 3 2 + /TPrA was developed using disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN algorithms, which allowed the prediction of   Ru ( bpy ) 3 2 + concentration using multiple key features. High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values was achieved in the detection range between 0.02 µM and 2.5 µM. The AI approaches using RF and FNN were capable of directly inferring the concentration of   Ru ( bpy ) 3 2 + using easily observable key features. The results demonstrate that data-driven AI algorithms are effective in analyzing the multimodal ECL sensor data. Therefore, these AI algorithms can be an essential part of the modeling arsenal with successful application in ECL sensor data modeling.


2019 ◽  
Vol 24 (1) ◽  
Author(s):  
Simson Tarigan ◽  
. Sumarningsih

<p><span lang="EN-US">The need for rapid diagnostic tools or point- of- care diagnostic tests for Avian Influenza in Indonesia is very high and the price of these imported diagnostic tools is very expensive. As a result, a large budget requires to provide the needs. The main component of a rapid diagnostic tool is the monoclonal antibody (mAb) specifically recognized influenza viruses. The objective of this study was to produce mAb that can recognize all subtypes of Avian Influenza viruses using the phage display technology. Influenza-A focused scFv commercial library was panned using alternating recombinant H1N1 NP and H5N1 virions. Whereas, bacteriophages bound to the panning baits were eluted with serum from H5N1-infected chickens. Phagemid from suppressor E. coli (TG1) infected with bacteriophage displaying anti-NP on its surface was isolated and then transformed into a non-suppressor E. coli (HB2151) to express NP-scFv. Monoclonal NP-scFv antibody with a molecular weight of about 27 kDa was purified from the culture supernatant using a nickel-chromatography column. The amount of pure NP-scFv obtained was around 1.2 mg /L culture. As an additional component for its use in immunoassays, antibody to NP-scFv was produced in rabbits. The generating polyclonal antibody recognized the NP-scFv specifically and sensitively. The anti-NP-scFv monoclonal antibody and the anti rabbit scFv polyclonal antibody produced in this study are envisaged appropriate for the development of diagnostic tools for point-of-care for Avian Influenza.</span></p>


2015 ◽  
Vol Volume 111 (Number 11/12) ◽  
Author(s):  
Suzanne Smith ◽  
Klariska Moodley ◽  
Ureshnie Govender ◽  
Hao Chen ◽  
Louis Fourie ◽  
...  

Abstract Current centralised healthcare models pose many challenges, particularly for developing countries such as South Africa, where travel and time costs make it difficult for patients to seek healthcare, even when urgently needed. To address this issue, point-of-care (PoC) tests, which are performed at or near the site of clinical care, have gained popularity and are actively being developed. Microfluidic systems, in which small volumes of fluids can be processed, provide an ideal platform on which to develop PoC diagnostic solutions. Specifically, the emerging field of paper-based microfluidics, with advantages such as low-cost, disposability and minimal external equipment requirements, provides unique opportunities for addressing healthcare issues in developing countries. This work explores the field of paper-based microfluidics, with step-by-step instructions on the design, manufacture and testing processes to realise paper-based devices towards diagnostic applications. Paper-based microfluidic and electronic components are presented, as well as the integration of these components to provide smart paper-based devices. This serves as an educational tool, enabling both beginners and experts in the field to fast-track development of unique paper-based solutions towards PoC diagnostics, with emphasis on the South African context, where both the need for and impact of these solutions are great.


2020 ◽  
Author(s):  
Pankaj Shihvare ◽  
Satyam Mohla ◽  
Tejal Dube ◽  
Alok Verma ◽  
Rohit Srivastava

AbstractLow-cost, paper-based colorimetric assays for early screening of albumin, creatinine and their ratio have been developed. The developed methods are noninvasive and require only 10µl of the urine sample. A reflectance-based optical reader has also been developed for the quantification of the albumin and creatinine. The developed method is based on spot urine testing which is advantageous when compared to the conventional 24-hour urine collection. The detection range of albumin and creatinine assays is 10-150 mg/dl and 25–400 mg/dl, respectively. The developed assays and optical reader were tested with the chronic kidney diseased patient’s samples at KEM Hospital, Mumbai.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 314
Author(s):  
U Jayalatsumi ◽  
A Feza Naaz ◽  
Kodavaluru Sravani3 ◽  
A Anusha ◽  
Alla Vasavi

This paper presents a low cost thermal imaging system for medical diagnostic applications. Available systems are expensive and are mostly meant for industrial applications. In this paper the existing system which is a basic system consisting of thermopile based sensor which produces thermal array is replaced with a “Thermal Imaging Camera” for medical diagnosis applications. The thermal camera scans the entire body of the individual to diagnose the diseases ie, infrared radiations from the human body part and then converts them to electronic signal. If there is any lump or any other unusual change inside the body, then the body temperature at that particular part will alone be high or low which indicates the “Hypo” or “Hyper” condition of the disease. Scene captured by the thermal camera is represented as a matrix. Each element of matrix represents a temperature value. Temperature values are divided into different ranges and each range is represented by an RGB value by the Raspberry Pi.  Based on this thermal camera image we can detect the exact location in individual body part and further for that part alone we can take test and detect what kind of disease the individual is suffering. This system can be used in wide applications in the field of medicine such as detection of breast cancer, fever screening, thyroid disease detection, early detection of risk for diabetic peripheral neuropathy, Reynaud’s phenomenon, orthopedics etc.  


Author(s):  
Yuan Jia ◽  
Hao Sun ◽  
Jinpeng Tian ◽  
Qiuming Song ◽  
Wenwei Zhang

The COVID-19 pandemic has resulted in significant global social and economic disruption. The highly transmissive nature of the disease makes rapid and reliable detection critically important. Point-of-care (POC) tests involve performing diagnostic tests outside of a laboratory that produce a rapid and reliable result. It therefore allows the diagnostics of diseases at or near the patient site. Paper-based POC tests have been gaining interest in recent years as they allow rapid, low-cost detection without the need for external instruments. In this review, we focus on the development of paper-based POC devices for the detection of SARS-CoV-2. The review first introduces the principles of detection methods that are available to paper-based devices. It then summarizes the state-of-the-art paper devices and their analytical performances. The advantages and drawbacks among methods are also discussed. Finally, limitations of the existing devices are discussed, and prospects are given with the hope to identify research opportunities and directions in the field. We hope this review will be helpful for researchers to develop a clinically useful and economically efficient paper-based platform that can be used for rapid, accurate on-site diagnosis to aid in identifying acute infections and eventually contain the COVID-19 pandemic.


2018 ◽  
Vol 12 (1) ◽  
Author(s):  
Luis R. Soenksen ◽  
David A. Martínez-Corona ◽  
Sofía Iñiguez de Gante ◽  
Pierre S. Phabmixay ◽  
Mauricio J. Marongiu Maggi

The shelf life of point-of-care and rapid diagnostic tests (POC-RDTs) is commonly compromised by abrupt temperature changes during storage, transportation, and use. This situation is especially relevant in tropical regions and resource-constrained settings where cold chain may be unreliable. Here, we report the use of novel and low-cost passive thermal shield (TS) made from laminated phase change material (PCM) to reduce thermal overload in POC-RDTs. Validation of the proposed design was done through numerical simulation and testing of an octadecane shield prototype in contact with a lateral flow immunoassay. The use of our TS design provided 30–45 min delay in thermal equilibration under constant and oscillating heat load challenges resembling those of field use. The addition of a thin PCM protection layer to POC-RDTs can be a cost-effective, scalable, and reliable solution to provide additional thermal stability to these devices.


Sign in / Sign up

Export Citation Format

Share Document