scholarly journals Empirical patterns of environmental variation favor the evolution of adaptive transgenerational plasticity

2018 ◽  
Author(s):  
Jack M. Colicchio ◽  
Jacob Herman

AbstractEffects of parental environment on offspring traits have been well known for decades. Interest in this transgenerational form of phenotypic plasticity has recently surged due to advances in our understanding of its mechanistic basis. Theoretical research has simultaneously advanced by predicting the environmental conditions that should favor the adaptive evolution of transgenerational plasticity. Yet whether such conditions actually exist in nature remains largely unexplored. Here, using long-term climate data, we modeled optimal levels of transgenerational plasticity for an organism with a one-year life cycle at a spatial resolution of 4km2 across the continental US. Both annual temperature and precipitation levels were often autocorrelated, but the strength and direction of these autocorrelations varied considerably across the continental US and even among nearby sites. When present, such environmental autocorrelations render offspring environments statistically predictable based on the parental environment, a key condition for the adaptive evolution of transgenerational plasticity. Results of our optimality models were consistent with this prediction: high levels of transgenerational plasticity were favored at sites with strong environmental autocorrelations, and little-to-no transgenerational plasticity was favored at sites with weak or non-existent autocorrelations. These results are among the first to show that natural patterns of environmental variation favor the evolution of adaptive transgenerational plasticity. Furthermore, these findings suggest that transgenerational plasticity is highly variable in nature, depending on site-specific patterns of environmental variation.

2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


1990 ◽  
Vol 14 ◽  
pp. 332
Author(s):  
Melinda M. Brugman

One possible cause of glacier terminus variation is climate change. The problem with proving or disproving this hypothesis is that the precise relationship between climate change and glacier flow response is still incompletely understood. In this paper, I examine the relationship between recent glacier terminus fluctuations and climate variations documented since the middle 1800s in the Pacific northwest region of the United States. Six glaciers located in Washington and one in Oregon are compared in terms of terminus position record, local climate data (temperature, precipitation, snowfall and runoff records) and also in terms of what is known about the flow dynamics of each glacier. A simple model is presented to simulate the observed response behavior of each glacier. The variables modeled here include surface and bed slope, ice thickness, glacier length, sliding and deformation mechanics, seasonality of glacier flow velocity, traveling wave dynamics, snow accumulation and ablation patterns, runoff, regional temperature and precipitation. Mainly, information obtained at Blue, South Cascade and Nisqually glaciers are compared to results obtained by the author at Shoestring Glacier on Mount St. Helens. Others studied include Forsythe, Elliot, Coleman glaciers. The effects of local volcanic eruptions are separated from those attributed to climate change. Local climate records show that times of cool-wet weather alternate with warm-dry weather on a time scale of 15 to 20 years. In general, no definable long-term trend of annual average temperature and precipitation is apparent in the climate records (starting in the mid-1800s), except for a suggestion of slightly increased annual precipitation in the northern part of Washington since about 1930. The availability and reliability of different types of climate data is discussed in the paper. At Shoestring Glacier, the observed rapid response to environmental changes (both climate and volcanic) is shown to be directly related to readily-described mechanics of glacier sliding, internal deformation and englacial thrusting along discrete shear zones. For other glaciers, a combination of a rapid sliding response and a slow long-term deformation and sliding response is apparent, and related to that of the Shoestring Glacier. Where stagnant ice exists at or near a glacier terminus, the response behavior may be further complicated. The stagnant ice is often overthrust and buried by reactivated ice moving down from higher elevations. In other situations, stagnant terminus ice is accreted to the front of the reactivated portion of a glacier and shoved downhill. This behavior is seen at Shoestring and Nisqually glaciers. Traveling waves (resembling kinematic waves) are apparent at three of the glaciers studied and probably occur to some degree at all the glaciers. Understanding of the details of glacier flow dynamics and existing terminus conditions helped to formulate a simple model that I use to simulate terminus fluctuation records of all seven glaciers. Records of terminus position studies indicate that three distinct trends exist for this region. The first is a long-term trend of progressive retreat throughout historic times (meaning locally since the early 1800s). The second trend is the dramatic decrease in the rate of retreat and (perhaps temporary) minor readvance of some glaciers (Blue, Nisqually, Forsythe, Coleman, Shoestring glaciers) since 1950. The third trend is the short-term oscillation of glacier terminus positions on a cycle of 15 to 20 years that has occurred since 1950. Except for a slight hint of increased precipitation since 1950, the long-term variation in glacier terminus positions cannot be explained by local climate records. This may be attributed to the shortness of the available climate records, and the large variance of annual temperature and precipitation data. Conversely, the high frequency glacier terminus variations (on the order of 10 to 20 years) are well correlated with local temperature and precipitation fluctuations. For example, Nisqually and Shoestring glaciers advanced when the climate pattern became cool-wet and retreated when the climate changed to warm-dry. Very short lag times are implied by the data for several glaciers, and these are discussed in the paper. Results indicate that certain local glaciers are very sensitive to short-term climate variations on the order of one to ten years. Large glaciers and glaciers flowing slowly down shallow slopes respond more sluggishly to short-term climate changes, as might be expected. Glaciers with the greatest degree of seasonality in their flow behavior, such as Nisqually and Shoestring glaciers, responded most rapidly. Using this information derived from recent glacier and climate records we may be able to better predict future trends of snow accumulation patterns and climate change.


Polar Record ◽  
2002 ◽  
Vol 38 (206) ◽  
pp. 203-210 ◽  
Author(s):  
E. J. Førland ◽  
I. Hanssen-Bauer ◽  
T. Jónsson ◽  
C. Kern-Hansen ◽  
P.Ø. Nordli ◽  
...  

AbstractIn a joint Nordic effort, a high-quality climate data set for the Nordic Arctic is established. The data set consists of monthly values from 20 stations in Greenland, Iceland, the Faeroes, and the Norwegian Arctic. The data set is made available on the web. Ten climate elements are included, and most of the series covers the period 1890–2000. The data series illustrate the large climatic contrasts in the Nordic Arctic, and demonstrate that parts of the region have experienced substantial climate variations during the last century. Despite increasing temperatures during recent decades, the present temperature level is still lower than in the 1930s and 1950s in large parts of the region. The pattern of long-term precipitation variations is more complicated, but in parts of the region the annual precipitation has increased substantially. At Svalbard Airport and Bjørnøya the annual precipitation has increased by more than 2.5% per decade during the twentieth century.Variations in atmospheric circulation can account for most of the long-term positive trend in precipitation in the Norwegian Arctic, and also for the positive temperature trend from the 1960s. The positive temperature trend before 1930 and the negative trend during the following decades, are, however, not accounted for by the circulation models.


1990 ◽  
Vol 14 ◽  
pp. 332-332
Author(s):  
Melinda M. Brugman

One possible cause of glacier terminus variation is climate change. The problem with proving or disproving this hypothesis is that the precise relationship between climate change and glacier flow response is still incompletely understood. In this paper, I examine the relationship between recent glacier terminus fluctuations and climate variations documented since the middle 1800s in the Pacific northwest region of the United States.Six glaciers located in Washington and one in Oregon are compared in terms of terminus position record, local climate data (temperature, precipitation, snowfall and runoff records) and also in terms of what is known about the flow dynamics of each glacier. A simple model is presented to simulate the observed response behavior of each glacier. The variables modeled here include surface and bed slope, ice thickness, glacier length, sliding and deformation mechanics, seasonality of glacier flow velocity, traveling wave dynamics, snow accumulation and ablation patterns, runoff, regional temperature and precipitation. Mainly, information obtained at Blue, South Cascade and Nisqually glaciers are compared to results obtained by the author at Shoestring Glacier on Mount St. Helens. Others studied include Forsythe, Elliot, Coleman glaciers. The effects of local volcanic eruptions are separated from those attributed to climate change.Local climate records show that times of cool-wet weather alternate with warm-dry weather on a time scale of 15 to 20 years. In general, no definable long-term trend of annual average temperature and precipitation is apparent in the climate records (starting in the mid-1800s), except for a suggestion of slightly increased annual precipitation in the northern part of Washington since about 1930. The availability and reliability of different types of climate data is discussed in the paper.At Shoestring Glacier, the observed rapid response to environmental changes (both climate and volcanic) is shown to be directly related to readily-described mechanics of glacier sliding, internal deformation and englacial thrusting along discrete shear zones. For other glaciers, a combination of a rapid sliding response and a slow long-term deformation and sliding response is apparent, and related to that of the Shoestring Glacier.Where stagnant ice exists at or near a glacier terminus, the response behavior may be further complicated. The stagnant ice is often overthrust and buried by reactivated ice moving down from higher elevations. In other situations, stagnant terminus ice is accreted to the front of the reactivated portion of a glacier and shoved downhill. This behavior is seen at Shoestring and Nisqually glaciers.Traveling waves (resembling kinematic waves) are apparent at three of the glaciers studied and probably occur to some degree at all the glaciers. Understanding of the details of glacier flow dynamics and existing terminus conditions helped to formulate a simple model that I use to simulate terminus fluctuation records of all seven glaciers.Records of terminus position studies indicate that three distinct trends exist for this region. The first is a long-term trend of progressive retreat throughout historic times (meaning locally since the early 1800s). The second trend is the dramatic decrease in the rate of retreat and (perhaps temporary) minor readvance of some glaciers (Blue, Nisqually, Forsythe, Coleman, Shoestring glaciers) since 1950. The third trend is the short-term oscillation of glacier terminus positions on a cycle of 15 to 20 years that has occurred since 1950.Except for a slight hint of increased precipitation since 1950, the long-term variation in glacier terminus positions cannot be explained by local climate records. This may be attributed to the shortness of the available climate records, and the large variance of annual temperature and precipitation data.Conversely, the high frequency glacier terminus variations (on the order of 10 to 20 years) are well correlated with local temperature and precipitation fluctuations. For example, Nisqually and Shoestring glaciers advanced when the climate pattern became cool-wet and retreated when the climate changed to warm-dry. Very short lag times are implied by the data for several glaciers, and these are discussed in the paper.Results indicate that certain local glaciers are very sensitive to short-term climate variations on the order of one to ten years. Large glaciers and glaciers flowing slowly down shallow slopes respond more sluggishly to short-term climate changes, as might be expected. Glaciers with the greatest degree of seasonality in their flow behavior, such as Nisqually and Shoestring glaciers, responded most rapidly. Using this information derived from recent glacier and climate records we may be able to better predict future trends of snow accumulation patterns and climate change.


Climate ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 123 ◽  
Author(s):  
Isabell Haag ◽  
Philip D. Jones ◽  
Cyrus Samimi

Changes in climate can be favorable as well as detrimental for natural and anthropogenic systems. Temperatures in Central Asia have risen significantly within the last decades whereas mean precipitation remains almost unchanged. However, climatic trends can vary greatly between different subregions, across altitudinal levels, and within seasons. Investigating in the seasonally and spatially differentiated trend characteristics amplifies the knowledge of regional climate change and fosters the understanding of potential impacts on social, ecological, and natural systems. Considering the known limitations of available climate data in this region, this study combines both high-resolution and long-term records to achieve the best possible results. Temperature and precipitation data were analyzed using Climatic Research Unit (CRU) TS 4.01 and NASA’s Tropical Rainfall Measuring Mission (TRMM) 3B43. To study long-term trends and low-frequency variations, we performed a linear trend analysis and compiled anomaly time series and regional grid-based trend maps. The results show a strong increase in temperature, almost uniform across the topographically complex study site, with particular maxima in winter and spring. Precipitation depicts minor positive trends, except for spring when precipitation is decreasing. Expected differences in the development of temperature and precipitation between mountain areas and plains could not be detected.


2020 ◽  
Author(s):  
Gernot Resch ◽  
Barbara Chimani ◽  
Roland Koch ◽  
Wolfgang Schöner ◽  
Christoph Marty

<p>Climate data contains vital information about the global climate system. To get the desired information out of measurements, they have to be homogenous, where the variability of a time series is only caused by variations in weather and climate and not due to external influences.</p><p>Snow is an important component of this system, treated as one of the most obvious visual evidences of climate change and important for countries with mountainous environments. But most of the existing tools and algorithms that are being used for homogenization have been developed for air temperature and precipitation, whereas their application to snow depth measurements has only been rarely attempted. Until now, there have only been smaller efforts to develop methods and tools for snow series.</p><p>We are trying to break new ground by developing innovative methods that can be applied to the homogenization of longterm snow observations, as well as to demonstrate the impact of the developed adjustments on climatologies and trends. For that, we are using daily longterm snow measurements of the two most frequently measured parameters, snow depth (HS) and new snow height (HN) from the Swiss-Austrian domain.</p><p>As a first approach, we are applying the existing methods PRODIGE for the detection of multiple inhomogeneities and INTERP for the calculation of corrections with a quantile-mapping approach on a seasonal basis on selected time series.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 996 ◽  
Author(s):  
Stephanie Gleixner ◽  
Teferi Demissie ◽  
Gulilat Tefera Diro

Reanalysis products are often taken as an alternative solution to observational weather and climate data due to availability and accessibility problems, particularly in data-sparse regions such as Africa. Proper evaluation of their strengths and weaknesses, however, should not be overlooked. The aim of this study was to evaluate the performance of ERA5 reanalysis and to document the progress made compared to ERA-interim for the fields of near-surface temperature and precipitation over Africa. Results show that in ERA5 the climatological biases in temperature and precipitation are clearly reduced and the representation of inter-annual variability is improved over most of Africa. However, both reanalysis products performed less well in terms of capturing the observed long-term trends, despite a slightly better performance of ERA5 over ERA-interim. Further regional analysis over East Africa shows that the representation of the annual cycle of precipitation is substantially improved in ERA5 by reducing the wet bias during the rainy season. The spatial distribution of precipitation during extreme years is also better represented in ERA5. While ERA5 has improved much in comparison to its predecessor, there is still demand for improved products with even higher resolution and accuracy to satisfy impact-based studies, such as in agriculture and water resources.


Sign in / Sign up

Export Citation Format

Share Document