scholarly journals Re-purposing Ac/Ds transgenic system for CRISPR/dCas9 modulation of enhancers and non-coding RNAs in zebrafish

2018 ◽  
Author(s):  
Vanessa Chong-Morrison ◽  
Filipa C. Simões ◽  
Upeka Senanayake ◽  
Dervla S. Carroll ◽  
Paul R. Riley ◽  
...  

AbstractDue to its genetic amenability coupled with recent advances in genome editing, the zebrafish serves as an excellent model to examine the function of both coding and non-coding elements. Recently, the non-coding genome has gained prominence due to its critical role in development and disease. Here, we have re-purposed the Ac/Ds maize transposition system to reliably screen and efficiently characterise zebrafish enhancers, with or without germline propagation. We further utilised the system to stably express guide RNAs in microinjected embryos enabling tissue-specific CRISPR/dCas9-interference (CRISPRi) knockdown of lncRNA and enhancer activity without disrupting the underlying genetic sequence. Our study highlights the utility of Ac/Ds transposition for transient epigenome modulation of non-coding elements in zebrafish.Summary statementWe adapted the Ac/Ds transposition system, which enables continuous expression of guide RNAs for CRISPR/dCas9 perturbation, to examine the function of non-coding RNAs and enhancer elements in zebrafish.

2018 ◽  
Vol 6 (3) ◽  
pp. 438-451 ◽  
Author(s):  
Yuwei Zhu ◽  
Zhiwei Huang

Abstract Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying CRISPR-associated (Cas) proteins provide RNA-guided adaptive immunity for prokaryotes to defend themselves against viruses. The CRISPR-Cas systems have attracted much attention in recent years for their power in aiding the development of genome editing tools. Based on the composition of the CRISPR RNA-effector complex, the CRISPR-Cas systems can be divided into two classes and six types. In this review, we summarize recent advances in the structural biology of the CRISPR-Cas-mediated genome editing tools, which helps us to understand the mechanism of how the guide RNAs assemble with diverse Cas proteins to cleave target nucleic acids.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 354
Author(s):  
Chia-Ming Su ◽  
Raymond Robert Richard Rowland ◽  
Dongwan Yoo

Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 527 ◽  
Author(s):  
Sonali Pal ◽  
Manoj Garg ◽  
Amit Kumar Pandey

Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.


2021 ◽  
Vol 22 (3) ◽  
pp. 1171
Author(s):  
Dexter L. Puckett ◽  
Mohammed Alquraishi ◽  
Winyoo Chowanadisai ◽  
Ahmed Bettaieb

Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.


Author(s):  
Eugene V. Gasanov ◽  
Justyna Jędrychowska ◽  
Michal Pastor ◽  
Malgorzata Wiweger ◽  
Axel Methner ◽  
...  

AbstractCurrent methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.


Gene Therapy ◽  
2020 ◽  
Vol 27 (7-8) ◽  
pp. 312-320
Author(s):  
Wen Sun ◽  
Haoyi Wang

Author(s):  
К.С. Кочергин-Никитский ◽  
А.В. Лавров ◽  
Е.В. Заклязьминская ◽  
С.А. Смирнихина

Наследственные кардиомиопатии характеризуются неблагоприятным прогнозом и низкой пятилетней выживаемостью пациентов с выраженной клиникой. При этом лечение, за исключением хирургического, в основном паллиативное, во многих случаях лишь трансплантация сердца может улучшить состояние пациента и прогноз. Часть наследственных кардиомиопатий ассоциирована с аутосомно-доминантными мутациями в гене DES, кодирующем белок промежуточных филаментов десмин, дефекты в котором ведут к развитию десминопатий с вовлечением наиболее активно работающих мышц - скелетных, миокарда, мышц дыхательной системы. Новые терапевтические подходы, основанные на методах геномного редактирования, могут позволить устранить каузативный генетический дефект. Так как имеются данные об отсутствии клинических симптомов у людей с гетерозиготными нонсенс мутациями в гене DES, по-видимому, имеется возможность снизить тяжесть протекания десминопатий путем нокаута мутантного аллеля в случае гетерозиготной мутации. Целью работы являлась проверка возможности специфического нокаута аллелей гена DES, несущих гетерозиготные мутации, ассоциированные с десминопатиями, методами геномного редактирования. Нами был получен генетический материал трех пациентов с десминопатиями, связанными с мутациями в гене DES (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Направляющие РНК, совместимые с нуклеазами SaCas9 и eSpCas9(1.1), были подобраны, используя онлайн сервис Benchling, и клонированы в плазмиды, несущие соответствующие эндонуклеазы Cas9. Редактирующие плазмиды котрансфицировали в клетки HEK293T вместе с «таргетными» плазмидами, содержащими участки гена DES с мутациями. Анализ характерных для негомологичного соединения концов инделов в выделенной из клеток спустя 48 часов после трансфекции тотальной ДНК проводился посредством TIDE-анализа полученных сиквенсов целевых участков, либо методом Т7Е1 анализа. Наибольшая средняя эффективность 2,22% (до 8,06%) показана при использовании sgRNA на мутацию c.330_338del в комбинации с eSpCas9(1.1). Эффективность других комбинаций направляющих РНК и Cas9 не превышала 3%. Достигнутая эффективность нокаута очевидно недостаточна для коррекции десминопатии на уровне организма. Необходимость специфического нокаутирования мутантных аллелей не позволяет использовать другие направляющие РНК для CRISPR/Cas9, поэтому необходимо совершенствование разработанных систем для повышения их эффективности либо использование новых, более эффективных, направляемых нуклеаз. Hereditary cardiomyopathies are characterized by the generally poor prognosis and low 5-year survival of patients with severe symptoms. Besides surgical approaches, cardiomyopathy therapy mainly palliative and often heart transplantation is the only option to improve patient state and prognosis. Some of these pathologies are associated with the autosomal-dominant DES gene mutations. DES encodes intermediate filaments protein desmin, which defects causes desminopathies involving most active muscles such as skeletal muscles, myocardium and respiratory muscles. New therapeutic based on genome editing approaches could be used to correct causative genetic defect. There are data that heterozygous nonsense mutations in DES gene may be asymptomatic. Thus there is, apparently, a possibility to decrease severity of desminopathy using mutant allele knockout. Purpose. The aim of this work was to test the possibility of specific knockout of the DES gene alleles with heterozygous desminopathy-associated mutations by means of genome editing methods. Materials. We received genetic materials of three patients with desminopathy caused by DES gene mutations (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Guide RNA, compatible with nucleases SaCas9 and eSpCas9(1.1) were designed using online service Benchling and cloned into plasmids with corresponding Cas9 nucleases. Editing plasmids were cotransfected into HEK293T cells with “target” plasmids, containing DES gene sites with mutations. NHEJ-produced indels were assessed using TIDE-analysis with amplified and sequenced sites or using T7E1 analysis. Results. Combination sgRNA for c.330_338del with eSpCas9(1.1) demonstrated most mean efficiency of 2,22% (up to 8,06%). Others combinations of sgRNAs and Cas9 efficiency did not overcome 3%. Conclusions. Achieved knockout efficiency is evidently not enough for organism-level desminopathy correction. The need for specific knockout of mutated alleles does not allow usage of different guide RNAs for CRISPR/Cas9, so it is necessary to improve the developed systems to increase their efficiency or to use new, more efficient, targeted nucleases.


Sign in / Sign up

Export Citation Format

Share Document