scholarly journals Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils

2018 ◽  
Author(s):  
Veronica Preite ◽  
Christian Sailer ◽  
Lara Syllwasschy ◽  
Sian Bray ◽  
Ute Krämer ◽  
...  

AbstractIt is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from 8 populations on metalliferous and non-metalliferous soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical SNPs in several A. halleri genes at two independently colonized metalliferous sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine metalliferous soils involves convergent evolution, which will likely be more pervasive across sites purposely chosen for maximal similarity in soil composition.

2019 ◽  
Vol 374 (1777) ◽  
pp. 20180243 ◽  
Author(s):  
Veronica Preite ◽  
Christian Sailer ◽  
Lara Syllwasschy ◽  
Sian Bray ◽  
Hassan Ahmadi ◽  
...  

It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa , which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’.


1980 ◽  
Vol 28 (1) ◽  
pp. 103 ◽  
Author(s):  
NA Campbell ◽  
JM Dearn

Morphological variation between and within the closely related species Praxibuius sp.. Kosciuscola cognatus and K. usiratus has been examined along three independent altitudinal transects, by a multivariate statistical approach. The analyses, which were restricted to males. show that there is complete morphological separation between the three species. Moreover. there are species-specific patterns of character correlation which are consistent and relatively invariant within species, and do not exhibit altitudinal variation. The results suggest that there exist both distinct invariant species-specific character patterns and variable character patterns showing intraspecific variation. It is concluded that speciation in these grasshoppers could have involved genetic changes quite distinct from those involved in local intraspecific adaptation. Two further results are: first. evidence has been obtained for character displacement between Kosciuscola cognaius and Praxibulus sp. in an area of extensive sympatry: second. populations of K. cognatus along one transect, with a karyotype intermediate between typical K. cognatus and X usiiatus, show a parallel change in morphology towards that characteristic of K. usiiatus.


2018 ◽  
Vol 115 (5) ◽  
pp. 968-973 ◽  
Author(s):  
Bronwyn A. Lucas ◽  
Eitan Lavi ◽  
Lily Shiue ◽  
Hana Cho ◽  
Sol Katzman ◽  
...  

Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3′-untranslated regions (3′-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3′-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3′-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20–25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.


2010 ◽  
Vol 365 (1552) ◽  
pp. 2487-2494 ◽  
Author(s):  
Paul M. Sharp ◽  
Beatrice H. Hahn

The major cause of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus type 1 (HIV-1). We have been using evolutionary comparisons to trace (i) the origin(s) of HIV-1 and (ii) the origin(s) of AIDS. The closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living chimpanzees ( Pan troglodytes troglodytes ) and gorillas ( Gorilla gorilla gorilla ) in west central Africa. Phylogenetic analyses have revealed the origins of HIV-1: chimpanzees were the original hosts of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species transmissions to humans and one or two of those transmissions may have been via gorillas. However, SIVs are primarily monkey viruses: more than 40 species of African monkeys are infected with their own, species-specific, SIV and in at least some host species, the infection seems non-pathogenic. Chimpanzees acquired from monkeys two distinct forms of SIVs that recombined to produce a virus with a unique genome structure. We have found that SIV infection causes CD4 + T-cell depletion and increases mortality in wild chimpanzees, and so the origin of AIDS is more ancient than the origin of HIV-1. Tracing the genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then humans may provide insights into the causes of the pathogenicity of these viruses.


2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Cecilia Estalles ◽  
Sheela P. Turbek ◽  
María José Rodríguez-Cajarville ◽  
Luís Fábio Silveira ◽  
Kazumasa Wakamatsu ◽  
...  

Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns—which involve combinations of multiple colour patches across the body—can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype–phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.


2016 ◽  
Vol 167 (6) ◽  
pp. 333-340
Author(s):  
Christian Rellstab ◽  
Andrea R. Pluess ◽  
Felix Gugerli

Local adaptation in forest trees: genetic processes and relevance under climate change Forest trees will have to adapt to future climatic changes, a process that will comprise genetic changes as a key component. Owing to technological advances it is now possible to identify the signature of natural selection and local adaptation in the genome. Environmental association analyses aim at associating adaptive genetic patterns with environmental parameters describing the local habitat. On the basis of such studies – including own investigations using oak and beech in Switzerland –, we show that forest trees are genetically differentiated along various environmental gradients, especially temperature and precipitation. Numerous genes could be found that presumably play a role in the adaptation to such environmental factors. Based on these findings, one could identify trees or stands that are adapted to future local conditions, and respective seed material could be considered in silviculture. Because such approaches are still in their infancy and because genome-environment interactions are complex, management strategies should focus on the preservation of (adaptive) genetic diversity, natural regeneration, and connectivity among stands. This would set the basis for the local adaptation of forest stands to altered environmental conditions by natural processes.


Zootaxa ◽  
2010 ◽  
Vol 2408 (1) ◽  
pp. 47 ◽  
Author(s):  
MERLIJN JOCQUE ◽  
LUC BRENDONCK ◽  
BRUCE J RIDDOCH ◽  
KOEN MARTENS

The ostracod fauna of southern Africa remains ill-known, in spite of the fact that the temporary pools of this zoogeographical region hold degrees of endemicity comparable only to those of the ancient lakes of East Africa. The present contribution describes a new species of the cypridid genus Amphibolocypris, A. arida sp.nov., and announces the existence of at least two further new species from the same area. The genus, up to now presumed monospecific, might constitute an extensive radiation across southern Africa. Unusually large species-specific differences in hemipenis outline morphology appear to indicate that speciation occurred through sexual, rather than through natural selection. The occurrence of the claw-like subapical seta on the walking limb in at least four genera could be a case of convergent evolution, at least in one, maybe even in two cases between species of different genera and even subfamilies.


1999 ◽  
Vol 202 (8) ◽  
pp. 909-918 ◽  
Author(s):  
M.C. Gopfert ◽  
L.T. Wasserthal

In contrast to previous assumptions, mouthparts form hearing organs not only in choerocampine hawkmoths but also in some distantly related acherontiine hawkmoth species. Four of the six acherontiine species studied revealed responses to ultrasonic sounds when stimulated during tethered flight. The responses included changes in flight speed and non-directional turns. Individuals from two species also responded by emitting sound. The minimum thresholds of the flight pattern changes were approximately 70 dB in all species studied, with species-specific best frequencies between 30 and 70 kHz. Some acherontiine species also move their tongue in a stereotyped way when stimulated acoustically. The activity of the muscles involved in this tongue reflex was characterized in the present study and used in combination with ablation experiments to localize the hearing organ. These experiments revealed auditory functions of the labial palps and the labral pilifers similar to those found in Choerocampina. The palp contributes a 20–25 dB rise in sensitivity, whereas the pilifer appears to contain the sensory organ. Structural differences suggest a convergent evolution of hearing in hawkmoths: in the place of the swollen palps of Choerocampina, acherontiine species capable of hearing possess a scale-plate of the palps that interacts with an articulating pilifer, while this modification is absent in closely related non-hearing species.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amanda Kowalczyk ◽  
Raghavendran Partha ◽  
Nathan L Clark ◽  
Maria Chikina

Although lifespan in mammals varies over 100-fold, the precise evolutionary mechanisms underlying variation in longevity remain unknown. Species-specific genetic changes have been observed in long-lived species including the naked mole-rat, bats, and the bowhead whale, but these adaptations do not generalize to other mammals. We present a novel method to identify associations between rates of protein evolution and continuous phenotypes across the entire mammalian phylogeny. Unlike previous analyses that focused on individual species, we treat absolute and relative longevity as quantitative traits and demonstrate that these lifespan traits affect the evolutionary constraint on hundreds of genes. Specifically, we find that genes related to cell cycle, DNA repair, cell death, the IGF1 pathway, and immunity are under increased evolutionary constraint in large and long-lived mammals. For mammals exceptionally long-lived for their body size, we find increased constraint in inflammation, DNA repair, and NFKB-related pathways. Strikingly, these pathways have considerable overlap with those that have been previously reported to have potentially adaptive changes in single-species studies, and thus would be expected to show decreased constraint in our analysis. This unexpected finding of increased constraint in many longevity-associated pathways underscores the power of our quantitative approach to detect patterns that generalize across the mammalian phylogeny.


Sign in / Sign up

Export Citation Format

Share Document