scholarly journals Landscape of RNA editing reveals new insights into the dynamic gene regulation of spermatogenesis based on integrated RNA-Seq

2018 ◽  
Author(s):  
Xiaodan Wang ◽  
Zhenshuo Zhu ◽  
Xiaolong Wu ◽  
Hao Li ◽  
Tongtong Li ◽  
...  

ABSTRACTSpermatogenesis is an important physiological process associated with male infertility. But whether there are RNA editings (REs) and what’s the role of REs during the process are still unclear. In this study, we integrated published RNA-Seq datasets and established a landscape of REs during the development of mouse spermatogenesis. 7530 editing sites among all types of male germ cells were found, which enrich on some regions of chromosome, including chromosome 17 and both ends of chromosome Y. Totally, REs occur in 2012 genes during spermatogenesis, more than half of which harbor at two different sites of the same gene at least. We also found REs mainly occur in introns, coding regions (CDSs) and intergenic regions. Moreover, about half of the REs in CDSs can cause amino acids changes. Finally, based on our adult male Kunming mice, we verified that there is a non-synonymous A-to-I RNA editing site inCog3during spermatogenesis, which is conserved not only between species but also across tissues. In short, based on the power of integrating RNA-Seq datasets, we provided the landscape of REs and found their dynamic changes during mouse spermatogenesis. This research strategy is general for other types of sequencing datasets and biological problems.

Development ◽  
2021 ◽  
Author(s):  
Zoe L. Grant ◽  
Peter F. Hickey ◽  
Waruni Abeysekera ◽  
Lachlan Whitehead ◽  
Sabrina M. Lewis ◽  
...  

Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA-sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1 deleted retinas, which lead to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions suggesting that the role of HBO1 is as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1199-1199 ◽  
Author(s):  
Brian Liddicoat ◽  
Robert Piskol ◽  
Alistair Chalk ◽  
Miyoko Higuchi ◽  
Peter Seeburg ◽  
...  

Abstract The role of RNA and its regulation is becoming increasingly appreciated as a vital component of hematopoietic development. RNA editing by members of the Adenosine Deaminase Acting on RNA (ADAR) gene family is a form of post-transcriptional modification which converts genomically encoded adenosine to inosine (A-to-I) in double-stranded RNA. A-to-I editing by ADAR directly converts the sequence of the RNA substrate and can alter the structure, function, processing, and localization of the targeted RNA. ADAR1 is ubiquitously expressed and we have previously described essential roles in the development of hematopoietic and hepatic organs. Germline ablation of murine ADAR1 results in a significant upregulation of interferon (IFN) stimulated genes and embryonic death between E11.5 and E12.5 associated with fetal liver disintegration and failed hemopoiesis. To determine the biological importance of A-to-I editing by ADAR1, we generated an editing dead knock-in allele of ADAR1 (ADAR1E861A). Mice homozygous for the ADAR1E861A allele died in utero at ∼E13.5. The fetal liver (FL) was small and had significantly lower cellularity than in controls. Analysis of hemopoiesis demonstrated increased apoptosis and a loss of hematopoietic stem cells (HSC) and all mature lineages. Most notably erythropoiesis was severely impaired with ∼7-fold reduction across all erythrocyte progenitor populations compared to controls. These data are consistent with our previous findings that ADAR1 is essential for erythropoiesis (unpublished data) and suggest that the ADAR1E861A allele phenocopies the null allele in utero. To assess the requirement of A-to-I editing in adult hematopoiesis, we generated mice where we could somatically delete the wild-type ADAR1 allele and leave only ADAR1E861A expressed in HSCs (hScl-CreERAdar1fl/E861A). In comparison to hScl-CreERAdar1fl/+ controls, hScl-CreERAdar1fl/E861A mice were anemic and had severe leukopenia 20 days post tamoxifen treatment. Investigation of marrow hemopoiesis revealed a significant loss of all cells committed to the erythroid lineage in hScl-CreERAdar1fl/E861A mice, despite having elevated phenotypic HSCs. Upon withdrawal of tamoxifen diet, all blood parameters were restored to control levels within 12 weeks owing to strong selection against cells expressing only the ADAR1E861A allele. To understand the mechanism through which ADAR1 mediated A-to-I editing regulates hematopoiesis, RNA-seq was performed. Gene expression profiles showed that a loss of ADAR1 mediated A-to-I editing resulted in a significant upregulation of IFN signatures, consistent with the gene expression changes in ADAR1 null mice. To define substrates of ADAR1 we assessed A-to-I mismatches in the RNA-seq data sets. 3,560 previously known and 353 novel A-to-I editing sites were identified in our data set. However, no single editing substrate discovered could account for the IFN signature observed or the lethality of ADAR1E861A/E861A mice. These results demonstrate that ADAR1 mediated A-to-I editing is essential for the maintenance of both fetal and adult hemopoiesis in a cell-autonomous manner and a key suppressor of the IFN response in hematopoiesis. Furthermore the ADAR1E861A allele demonstrates the essential role of ADAR1 in vivo is A-to-I editing. Disclosures: Hartner: TaconicArtemis: Employment.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10456
Author(s):  
Mikhail Moldovan ◽  
Zoe Chervontseva ◽  
Georgii Bazykin ◽  
Mikhail S. Gelfand

Background The bulk of variability in mRNA sequence arises due to mutation—change in DNA sequence which is heritable if it occurs in the germline. However, variation in mRNA can also be achieved by post-transcriptional modification including mRNA editing, changes in mRNA nucleotide sequence that mimic the effect of mutations. Such modifications are not inherited directly; however, as the processes affecting them are encoded in the genome, they have a heritable component, and therefore can be shaped by selection. In soft-bodied cephalopods, adenine-to-inosine RNA editing is very frequent, and much of it occurs at nonsynonymous sites, affecting the sequence of the encoded protein. Methods We study selection regimes at coleoid A-to-I editing sites, estimate the prevalence of positive selection, and analyze interdependencies between the editing level and contextual characteristics of editing site. Results Here, we show that mRNA editing of individual nonsynonymous sites in cephalopods originates in evolution through substitutions at regions adjacent to these sites. As such substitutions mimic the effect of the substitution at the edited site itself, we hypothesize that they are favored by selection if the inosine is selectively advantageous to adenine at the edited position. Consistent with this hypothesis, we show that edited adenines are more frequently substituted with guanine, an informational analog of inosine, in the course of evolution than their unedited counterparts, and for heavily edited adenines, these transitions are favored by positive selection. Our study shows that coleoid editing sites may enhance adaptation, which, together with recent observations on Drosophila and human editing sites, points at a general role of RNA editing in the molecular evolution of metazoans.


Blood ◽  
2020 ◽  
Author(s):  
Yanyan Ding ◽  
Wen Wang ◽  
Dongyuan Ma ◽  
Guixian Liang ◽  
Zhixin Kang ◽  
...  

Nascent HSPCs acquire definitive hematopoietic characteristics only when they develop into fetal HSPCs; however, the mechanisms underlying fetal HSPC development are poorly understood. Here, we profiled the chromatin accessibility and transcriptional features of zebrafish nascent- and fetal HSPCs using ATAC-seq and RNA-seq and revealed dynamic changes during HSPC transition. Functional assays demonstrated that chromatin remodeler-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Systematical screening of chromatin remodeler-related genes identified that smarca5 is responsible for the maintenance of chromatin accessibility at promoters of hematopoiesis-related genes in fetal HSPCs. Mechanistically, Smarca5 interacts with Nucleolin to promote chromatin remodeling, thereby facilitating genomic binding of transcription factors to regulate expression of hematopoietic regulators such as bcl11ab. Our results unravel a new role of epigenetic regulation and reveal that Smarca5-mediated epigenetic programming is responsible for fetal HSPC development, which will provide new insights into the generation of functional HSPCs both in vivo and in vitro.


Author(s):  
Chathurani Ranathunge ◽  
Sreepriya Pramod ◽  
Sébastien Renaut ◽  
Gregory Wheeler ◽  
Andy Perkins ◽  
...  

Mutations that provide environment dependent selective advantages drive adaptive divergence among species. Many phenotypic differences among related species are more likely to result from gene expression divergence rather than from non-synonymous mutations. In this regard, cis-regulatory mutations play an important part in generating functionally significant variation. Some proposed mechanisms that explore the role of cis-regulatory mutations in gene expression divergence involve microsatellites. Microsatellites exhibit high mutation rates and are abundant in both coding and non-coding regions and could influence gene function and products. Here we tested the hypothesis that microsatellites contribute to gene expression divergence among species with 50 individuals from nine closely related Helianthus species using an RNA-seq approach. Differential expression analyses of the transcriptomes revealed that genes containing microsatellites in non-coding regions (UTRs and introns) are more likely to be differentially expressed among species when compared to genes with microsatellites in the coding regions and transcripts lacking microsatellites. We detected a greater proportion of shared microsatellites in 5’UTRs and coding regions compared to 3’UTRs and non-coding transcripts among Helianthus spp. Further, allele frequency differences measured by pairwise FST at single nucleotide polymorphisms (SNPs), indicate greater genetic divergence in transcripts containing microsatellites compared to those lacking microsatellites. A gene ontology (GO) analysis revealed that microsatellite-containing differentially expressed genes are significantly enriched for GO terms associated with regulation of transcription and transcription factor activity. Collectively, our study provides compelling evidence to support the role of microsatellites in gene expression divergence.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3928-3928
Author(s):  
Ji Wen ◽  
Michael Rusch ◽  
Michael Edmonson ◽  
Charles Mullighan ◽  
Tanja A. Gruber ◽  
...  

Abstract Introduction: Post-transcriptional modification of RNA, known as RNA-editing, has been shown to occur in many species including human. A recent study using genomic data from adult solid tumors generated by The Cancer Genome Atlas project (TCGA) investigated the potential effects of RNA editing on cancer cell viability, invasion potential, cancer pathogenesis and drug sensitivity (Han, et al., Cancer Cell 2015). Historically, there have been mixed reports regarding the prevalence of RNA editing in human cells, partly due to substantial difficulties in distinguishing RNA editing events from mapping artifacts in next-generation sequencing (NGS) data. In this study, we developed a suite of computational analysis tools to enable precise mapping of RNA-Seq in order to carry out the first systematic investigation of RNA editing events affecting coding regions in pediatric leukemia. Methods: We developed a knowledge-guided accurate RNA-Seq mapping pipeline named StrongArm to maximize mapping accuracy and efficiency. StrongArm performs multiple mappings with different aligners and databases, and uses a set of competition heuristics to choose an optimal mapping, thereby reducing the mapping error rate and bias introduced by any single aligner, especially for error-prone splice junction sites and paralogs. The analysis was performed on 17 leukemia samples including 10 acute myeloid leukemia subtype M7 (AMLM7) and 7 Ph-like acute lymphoblastic leukemia (Ph-like ALL), which were profiled using RNA-Seq of tumor samples and whole-genome sequencing or whole-exome sequencing of paired tumor and normal DNA samples. The single nucleotide variants (SNVs) detected in RNA-Seq, but absent in DNA samples, were considered putative editing events and were further processed to remove additional false positives that could not be corrected by the mapping pipeline alone. These false positive variants, arising from paralog mapping artifacts, genetic polymorphisms, nano exons, and sequencing errors at homopolymer loci introduced by reverse transcription, account for 96% to 99% of putative DNA-RNA coding variants in the leukemia samples. Results: Using 17 leukemia samples, we identified a total of 103 RNA editing events in coding regions affecting 43 unique loci, 92% of which were canonical A-to-G or C-to-T editing; 62 (61%) and 66 (64%) of the 103 editing events match those in the RNA editing database DARNED and RADAR, respectively. Seventy-eight (76%) of 103 editing events resulted in missense variants, suggesting that they may potentially affect protein function. The four most prevalent RNA editing events were present in 30% our leukemia samples, including COG3 I635V (n=12), BLCAP Q5R (n=10), CDK13 Q103R (n=9) and AZIN1 S367G (n=6). Previous studies have shown that AZIN1 S367G and COG3 I635V impact cell proliferation, and that BLCAP Q5R is correlated with survival rate in renal clear cell carcinoma (Han, et al., Cancer Cell 2015), while the impact of CDK13 Q103R in leukemia is unknown. Interestingly, three of four candidate "master" driver editing sites identified in TCGA solid tumors, AZIN1 S367G, COPA I164V, and COG3 I635V were also present in our data set, while GRIA2 R764G is absent, as GRIA2 is not expressed in leukemia. Conclusions and Discussion: Leveraging an accurate mapping pipeline for RNA-seq data, we found that pediatric leukemia samples have fewer RNA-editing events (3 to 14 per sample) in coding exons, comparable to the informative coding RNA-editing events identified in adult solid tumors from the TCGA. Notably, 3 out of the 4 most common RNA-editing sites in our leukemia samples have been reported to have functional effects on cell survival / proliferation or have been correlated with patient survival rate in adult solid tumors, indicating that RNA-editing in coding regions may have a functional impact on leukemia tumorigenesis. Disclosures Mullighan: Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Speakers Bureau; Loxo Oncology: Research Funding.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 933
Author(s):  
Chathurani Ranathunge ◽  
Sreepriya Pramod ◽  
Sébastien Renaut ◽  
Gregory L. Wheeler ◽  
Andy D. Perkins ◽  
...  

Mutations that provide environment-dependent selective advantages drive adaptive divergence among species. Many phenotypic differences among related species are more likely to result from gene expression divergence rather than from non-synonymous mutations. In this regard, cis-regulatory mutations play an important part in generating functionally significant variation. Some proposed mechanisms that explore the role of cis-regulatory mutations in gene expression divergence involve microsatellites. Microsatellites exhibit high mutation rates achieved through symmetric or asymmetric mutation processes and are abundant in both coding and non-coding regions in positions that could influence gene function and products. Here we tested the hypothesis that microsatellites contribute to gene expression divergence among species with 50 individuals from five closely related Helianthus species using an RNA-seq approach. Differential expression analyses of the transcriptomes revealed that genes containing microsatellites in non-coding regions (UTRs and introns) are more likely to be differentially expressed among species when compared to genes with microsatellites in the coding regions and transcripts lacking microsatellites. We detected a greater proportion of shared microsatellites in 5′UTRs and coding regions compared to 3′UTRs and non-coding transcripts among Helianthus spp. Furthermore, allele frequency differences measured by pairwise FST at single nucleotide polymorphisms (SNPs), indicate greater genetic divergence in transcripts containing microsatellites compared to those lacking microsatellites. A gene ontology (GO) analysis revealed that microsatellite-containing differentially expressed genes are significantly enriched for GO terms associated with regulation of transcription and transcription factor activity. Collectively, our study provides compelling evidence to support the role of microsatellites in gene expression divergence.


2019 ◽  
Author(s):  
Chan-Shuo Wu ◽  
Sze Jing Tang ◽  
Hong Kee Tan ◽  
Li-Yuan Hung ◽  
Wei Wen Teo ◽  
...  

AbstractBackgroundADAR1, an adenosine-to-inosine (A-to-I) RNA editing enzyme, has an emerging role in cancer immunotherapy. ADAR1 presumably works by suppressing cellular innate immunity response to endogenously generated double-stranded RNAs through RNA editing. However, RNA species that are directly regulated by ADAR1 mediated RNA editing processes remain poorly defined.ResultsIn this study, we used a novel bioinformatics approach to track ADAR1-RNA interactions. By integrating DNA-seq, RNA-seq, and ADAR1 RNA immunoprecipitation sequencing (fRIP-seq) data of K562 cell line, we provided the first in-situ landscape profiling of ADAR1 RNA binding and editing activities. With long RNA fragments captured by ADAR1 immunoprecipitation, we were able to identify exon junctions and genomic boundaries used by ADAR1-associated RNAs and thus we could possibly trace pre-RNA processing steps that had been acting on them. Our methodology allowed us to acquire the knowledge of transcriptome-wide scenario of ADAR1 activities. Intriguingly, we found that ADAR1 had a tendency to interact with transcriptional byproducts originated from obscure regions such as introns and intergenic regions.ConclusionsOur observation might shed light on the dual role of ADAR1 proteins not only in diversifying the transcriptome, but also in reigning RNA debris from obscure regions. Moreover, as the functional potential of seemly transcriptional byproducts is just beginning to emerge, this study would bridge ADAR1 with other fields of RNA biology.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11575-11575
Author(s):  
Wolfgang Michael Korn ◽  
Iwei Yey ◽  
Jessica Van Ziffle ◽  
James P Grenert ◽  
Nancy Joseph ◽  
...  

11575 Background: Targeted next-generation DNA sequencing of paired tumor and normal DNA samples allows for detection of biologically relevant variants in the tumor with significantly greater accuracy than tumor-only sequencing. In addition, this approach presents with the opportunity of unveiling previously unknown cancer predisposition traits in a patient’s germline DNA. Methods: We sought to determine the rate of pathogenic germline alterations in 546 consecutive pediatric and adult patients who underwent molecular profiling using the UCSF 500 assay, a hybrid capture-based DNA sequencing assay targeting the coding regions of ~500 cancer-related genes, TERT promoter, select introns from 40 genes (for detection of gene fusions and other structural variants), and intergenic regions at regular intervals along each chromosome (for chromosomal copy number and LOH assessment). Results: Pathogenic germline alterations were found in 89/546 patients (16.3%), including 25 pediatric and 64 adult cases. Germline variants were identified in 37 genes with MUTYH (n = 15, 17%), CHEK2 (n = 10, 11%), BRCA2 (n = 9, 10%), BRCA1 (n = 5, 6%), TP53 (n = 5, 5%), and APC (n = 4, 5%) being altered most frequently. Loss of heterozygosity of genes affected in the germline was seen in tumor DNA 37 (42%) cases, highlighting their likely role as drivers of tumorigenesis. Clinically relevant germline findings not associated with increased cancer risk were identified in 6 (7%) of the cases, for example a COL1A1 mutation associated with Ehlers-Danlos Syndrome. In In 73 (82%) of the cases, pathogenic germline alterations were new findings and genetic counseling was recommended. A possible, previously unknown, role of germline mutations was found in some instances, including a TSC2 germline mutation in a patient with hybrid oncocytoma/chromophobe tumor (HOCT) with loss of the normal TSC2 allele in the tumor. Conclusions: Our data suggest that paired tumor/normal DNA analysis uncovers actionable heritable traits in a substantial fraction of patients and represents the preferred approach to analyzing malignancies in children and adults.


2020 ◽  
pp. 92-107 ◽  
Author(s):  
A. I. Bakhtigaraeva ◽  
A. A. Stavinskaya

The article considers the role of trust in the economy, the mechanisms of its accumulation and the possibility of using it as one of the growth factors in the future. The advantages and disadvantages of measuring the level of generalized trust using two alternative questions — about trusting people in general and trusting strangers — are analyzed. The results of the analysis of dynamics of the level of generalized trust among Russian youth, obtained within the study of the Institute for National Projects in 10 regions of Russia, are presented. It is shown that there are no significant changes in trust in people in general during the study at university. At the same time, the level of trust in strangers falls, which can negatively affect the level of trust in the country as a whole, and as a result have negative effects on the development of the economy in the future. Possible causes of the observed trends and the role of universities are discussed. Also the question about the connection between the level of education and generalized trust in countries with different quality of the institutional environment is raised.


Sign in / Sign up

Export Citation Format

Share Document