Prevalence of RNA Editing Events Affecting Coding Regions in Pediatric Leukemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3928-3928
Author(s):  
Ji Wen ◽  
Michael Rusch ◽  
Michael Edmonson ◽  
Charles Mullighan ◽  
Tanja A. Gruber ◽  
...  

Abstract Introduction: Post-transcriptional modification of RNA, known as RNA-editing, has been shown to occur in many species including human. A recent study using genomic data from adult solid tumors generated by The Cancer Genome Atlas project (TCGA) investigated the potential effects of RNA editing on cancer cell viability, invasion potential, cancer pathogenesis and drug sensitivity (Han, et al., Cancer Cell 2015). Historically, there have been mixed reports regarding the prevalence of RNA editing in human cells, partly due to substantial difficulties in distinguishing RNA editing events from mapping artifacts in next-generation sequencing (NGS) data. In this study, we developed a suite of computational analysis tools to enable precise mapping of RNA-Seq in order to carry out the first systematic investigation of RNA editing events affecting coding regions in pediatric leukemia. Methods: We developed a knowledge-guided accurate RNA-Seq mapping pipeline named StrongArm to maximize mapping accuracy and efficiency. StrongArm performs multiple mappings with different aligners and databases, and uses a set of competition heuristics to choose an optimal mapping, thereby reducing the mapping error rate and bias introduced by any single aligner, especially for error-prone splice junction sites and paralogs. The analysis was performed on 17 leukemia samples including 10 acute myeloid leukemia subtype M7 (AMLM7) and 7 Ph-like acute lymphoblastic leukemia (Ph-like ALL), which were profiled using RNA-Seq of tumor samples and whole-genome sequencing or whole-exome sequencing of paired tumor and normal DNA samples. The single nucleotide variants (SNVs) detected in RNA-Seq, but absent in DNA samples, were considered putative editing events and were further processed to remove additional false positives that could not be corrected by the mapping pipeline alone. These false positive variants, arising from paralog mapping artifacts, genetic polymorphisms, nano exons, and sequencing errors at homopolymer loci introduced by reverse transcription, account for 96% to 99% of putative DNA-RNA coding variants in the leukemia samples. Results: Using 17 leukemia samples, we identified a total of 103 RNA editing events in coding regions affecting 43 unique loci, 92% of which were canonical A-to-G or C-to-T editing; 62 (61%) and 66 (64%) of the 103 editing events match those in the RNA editing database DARNED and RADAR, respectively. Seventy-eight (76%) of 103 editing events resulted in missense variants, suggesting that they may potentially affect protein function. The four most prevalent RNA editing events were present in 30% our leukemia samples, including COG3 I635V (n=12), BLCAP Q5R (n=10), CDK13 Q103R (n=9) and AZIN1 S367G (n=6). Previous studies have shown that AZIN1 S367G and COG3 I635V impact cell proliferation, and that BLCAP Q5R is correlated with survival rate in renal clear cell carcinoma (Han, et al., Cancer Cell 2015), while the impact of CDK13 Q103R in leukemia is unknown. Interestingly, three of four candidate "master" driver editing sites identified in TCGA solid tumors, AZIN1 S367G, COPA I164V, and COG3 I635V were also present in our data set, while GRIA2 R764G is absent, as GRIA2 is not expressed in leukemia. Conclusions and Discussion: Leveraging an accurate mapping pipeline for RNA-seq data, we found that pediatric leukemia samples have fewer RNA-editing events (3 to 14 per sample) in coding exons, comparable to the informative coding RNA-editing events identified in adult solid tumors from the TCGA. Notably, 3 out of the 4 most common RNA-editing sites in our leukemia samples have been reported to have functional effects on cell survival / proliferation or have been correlated with patient survival rate in adult solid tumors, indicating that RNA-editing in coding regions may have a functional impact on leukemia tumorigenesis. Disclosures Mullighan: Incyte: Membership on an entity's Board of Directors or advisory committees; Amgen: Speakers Bureau; Loxo Oncology: Research Funding.

2018 ◽  
Vol 48 (6) ◽  
pp. 2231-2246 ◽  
Author(s):  
Kuan-Fu Liao ◽  
Tsung-Lang Chiu ◽  
Sung-Ying Huang ◽  
Teng-Fu Hsieh ◽  
Shu-Fang Chang ◽  
...  

Background/Aims: Radix Angelica Sinensis (danggui in Chinese) is widely used in traditional chinese medicine (TCM). N-butylidenephthalide (BP), a bioactive compound in danggui, is a potential antitumor agent for various cancer types. However, its clinical effect and mechanism in the treatment of gastric cancer remain undetermined. Methods: The in vivo protective effect of danggui in patients with gastric cancer were validated using data from Taiwan’s National Health Insurance Research Database (NHIRD). The genes induced by BP-treatment were analyzed by whole transcriptome RNA sequencing (RNA-seq) and validated by real-time PCR, western blot and siRNA transfection. The effect of BP on AGS cell migration and invasion was evaluated in transwell assays. The antitumor effects of BP were evaluated in vivo in an AGS xenograft animal model. Results: Danggui users were found to have an increased survival rate when compared with danggui nonusers (log-rank test p = 0.002) . The use of danggui highly associated with decreased mortality (the adjusted hazard ratio (HR) of danggui user was 0.72 [95 % CI, 0.57-0.92] (p = 0.009). The in vitro results showed that BP inhibited gastric cancer cell proliferation, and triggered cellular apoptosis depending on the activation of mitochondrial apoptotic pathway. Using RNA-seq analysis we found that REDD1 was the highest transcript induced by BP in gastric cancer cells. BP induce an increase of REDD1 expression that inhibits mTOR signaling, thus inhibiting gastric cancer growth. We used RNA interference to demonstrate that the knock-down of REDD1 attenuated the BP-induced mTORC1 activation and growth inhibition. BP suppressed the growth of AGS xenografts tumor in vivo. Conclusion: Danggui can prolong the survival rate of gastric cancer patients in Taiwan. BP caused gastric cancer cell death through the activation of mitochondria-intrinsic pathway and induced the REDD1 expression leading to mTOR signal pathway inhibition in gastric cancer cells. BP inhibited the in vivo growth of AGS xenograft tumors. These results may provide the basis for a new therapeutic approach toward the treatment of gastric cancer progression.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 327 ◽  
Author(s):  
Zishuai Wang ◽  
Xikang Feng ◽  
Zhonglin Tang ◽  
Shuai Cheng Li

Recently, the prevalence and importance of RNA editing have been illuminated in mammals. However, studies on RNA editing of pigs, a widely used biomedical model animal, are rare. Here we collected RNA sequencing data across 11 tissues and identified more than 490,000 RNA editing sites. We annotated their biological features, detected flank sequence characteristics of A-to-I editing sites and the impact of A-to-I editing on miRNA–mRNA interactions, and identified RNA editing quantitative trait loci (edQTL). Sus scrofa RNA editing sites showed high enrichment in repetitive regions with a median editing level as 15.38%. Expectedly, 96.3% of the editing sites located in non-coding regions including intron, 3′ UTRs, intergenic, and gene proximal regions. There were 2233 editing sites located in the coding regions and 980 of them caused missense mutation. Our results indicated that to an A-to-I editing site, the adjacent four nucleotides, two before it and two after it, have a high impact on the editing occurrences. A commonly observed editing motif is CCAGG. We found that 4552 A-to-I RNA editing sites could disturb the original binding efficiencies of miRNAs and 4176 A-to-I RNA editing sites created new potential miRNA target sites. In addition, we performed edQTL analysis and found that 1134 edQTLs that significantly affected the editing levels of 137 RNA editing sites. Finally, we constructed PRESDB, the first pig RNA editing sites database. The site provides necessary functions associated with Sus scrofa RNA editing study.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1199-1199 ◽  
Author(s):  
Brian Liddicoat ◽  
Robert Piskol ◽  
Alistair Chalk ◽  
Miyoko Higuchi ◽  
Peter Seeburg ◽  
...  

Abstract The role of RNA and its regulation is becoming increasingly appreciated as a vital component of hematopoietic development. RNA editing by members of the Adenosine Deaminase Acting on RNA (ADAR) gene family is a form of post-transcriptional modification which converts genomically encoded adenosine to inosine (A-to-I) in double-stranded RNA. A-to-I editing by ADAR directly converts the sequence of the RNA substrate and can alter the structure, function, processing, and localization of the targeted RNA. ADAR1 is ubiquitously expressed and we have previously described essential roles in the development of hematopoietic and hepatic organs. Germline ablation of murine ADAR1 results in a significant upregulation of interferon (IFN) stimulated genes and embryonic death between E11.5 and E12.5 associated with fetal liver disintegration and failed hemopoiesis. To determine the biological importance of A-to-I editing by ADAR1, we generated an editing dead knock-in allele of ADAR1 (ADAR1E861A). Mice homozygous for the ADAR1E861A allele died in utero at ∼E13.5. The fetal liver (FL) was small and had significantly lower cellularity than in controls. Analysis of hemopoiesis demonstrated increased apoptosis and a loss of hematopoietic stem cells (HSC) and all mature lineages. Most notably erythropoiesis was severely impaired with ∼7-fold reduction across all erythrocyte progenitor populations compared to controls. These data are consistent with our previous findings that ADAR1 is essential for erythropoiesis (unpublished data) and suggest that the ADAR1E861A allele phenocopies the null allele in utero. To assess the requirement of A-to-I editing in adult hematopoiesis, we generated mice where we could somatically delete the wild-type ADAR1 allele and leave only ADAR1E861A expressed in HSCs (hScl-CreERAdar1fl/E861A). In comparison to hScl-CreERAdar1fl/+ controls, hScl-CreERAdar1fl/E861A mice were anemic and had severe leukopenia 20 days post tamoxifen treatment. Investigation of marrow hemopoiesis revealed a significant loss of all cells committed to the erythroid lineage in hScl-CreERAdar1fl/E861A mice, despite having elevated phenotypic HSCs. Upon withdrawal of tamoxifen diet, all blood parameters were restored to control levels within 12 weeks owing to strong selection against cells expressing only the ADAR1E861A allele. To understand the mechanism through which ADAR1 mediated A-to-I editing regulates hematopoiesis, RNA-seq was performed. Gene expression profiles showed that a loss of ADAR1 mediated A-to-I editing resulted in a significant upregulation of IFN signatures, consistent with the gene expression changes in ADAR1 null mice. To define substrates of ADAR1 we assessed A-to-I mismatches in the RNA-seq data sets. 3,560 previously known and 353 novel A-to-I editing sites were identified in our data set. However, no single editing substrate discovered could account for the IFN signature observed or the lethality of ADAR1E861A/E861A mice. These results demonstrate that ADAR1 mediated A-to-I editing is essential for the maintenance of both fetal and adult hemopoiesis in a cell-autonomous manner and a key suppressor of the IFN response in hematopoiesis. Furthermore the ADAR1E861A allele demonstrates the essential role of ADAR1 in vivo is A-to-I editing. Disclosures: Hartner: TaconicArtemis: Employment.


2020 ◽  
Author(s):  
Christopher Kay ◽  
Tom A Williams ◽  
Wendy Gibson

Abstract Background: Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes.Results: We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAswere used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions: Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.


2020 ◽  
Author(s):  
aidi zhang ◽  
jing fang ◽  
xiaohan jiang ◽  
tengfei wang ◽  
xiujun zhang

Abstract Background RNA editing is a post-transcriptional modification that complement variation at the DNA level. Until now, different RNA editing systems were found in the major eukaryotic lineages. However, the evolution trajectory in plant chloroplast remains unclear. To gain a better understanding of RNA editing in plant chloroplast, in this study, based on publicly available RNA-seq data across three clades (fern, gymnosperm, and angiosperm), we provided a detailed analysis of RNA editing events in plant chloroplasts and discussed the evolution of RNA editing in land plants. Results There were a total of 5,389 editing sites located in leaf chloroplast identified across 21 plants after rigorous screening. We found that the cluster of RNA editing sites across 21 plants complied with the phylogenetic tree based on linked protein sequences approximately, there is a common phenomenon that more editing sites occurred in ancient plants for all the three clades. Statistics results revealed that majority (~ 95%) of the editing events resulted in non-synonymous codon changes, RNA editing occurred in second codon position was mainly the largest, and RNA editing caused an overall increase in hydrophobicity of the resulting proteins. The analyses also revealed that there was an uneven distribution of editing sites among species, genes, and codon positions, the average RNA editing extent varied among different plants as well as genes, a lowest RNA editing extent (0.43) was detected in Selaginella moellendorffii. Finally, we found that the loss of editing sites along angiosperm evolution is mainly occurring by reduce of cytosines content, where fern plants has the highest cytosine content. Conclusions Many of the RNA sites identified in our study have not been previously reported and provide a valuable data set for future research community. Our findings also provide valuable information for evolution of RNA editing in plants.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
J. Zyprych-Walczak ◽  
A. Szabelska ◽  
L. Handschuh ◽  
K. Górczak ◽  
K. Klamecka ◽  
...  

High-throughput sequencing technologies, such as the Illumina Hi-seq, are powerful new tools for investigating a wide range of biological and medical problems. Massive and complex data sets produced by the sequencers create a need for development of statistical and computational methods that can tackle the analysis and management of data. The data normalization is one of the most crucial steps of data processing and this process must be carefully considered as it has a profound effect on the results of the analysis. In this work, we focus on a comprehensive comparison of five normalization methods related to sequencing depth, widely used for transcriptome sequencing (RNA-seq) data, and their impact on the results of gene expression analysis. Based on this study, we suggest a universal workflow that can be applied for the selection of the optimal normalization procedure for any particular data set. The described workflow includes calculation of the bias and variance values for the control genes, sensitivity and specificity of the methods, and classification errors as well as generation of the diagnostic plots. Combining the above information facilitates the selection of the most appropriate normalization method for the studied data sets and determines which methods can be used interchangeably.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
C. Kay ◽  
T. A. Williams ◽  
W. Gibson

Abstract Background Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. Results We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.


2020 ◽  
Author(s):  
Boas Pucker ◽  
Anna Schwandner ◽  
Sarah Becker ◽  
Ludger Hausmann ◽  
Prisca Viehöver ◽  
...  

AbstractPlants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator VviAP1 served as an indicator for progress of development. We investigated the impact of changing temperatures on gene expression levels during the time series and detected a correlation between increased temperatures and a high expression level of genes encoding heat-shock proteins. The data set also allowed the exemplary investigation of expression patterns of genes from three transcription factor (TF) gene families, namely MADS-box, WRKY, and R2R3-MYB genes. Inspection of the expression profiles from all three TF gene families indicated that a switch in the developmental program takes place in July which coincides with increased expression of the bud dormancy marker gene VviDRM1.


2020 ◽  
Author(s):  
Aidi Zhang ◽  
Jing Fang ◽  
Xiaohan Jiang ◽  
Tengfei Wang ◽  
Xiujun Zhang

AbstractBackgroundRNA editing is a post-transcriptional modification that complement variation at the DNA level. Until now, different RNA editing systems were found in the major eukaryotic lineages. However, the evolution trajectory in plant chloroplast remains unclear. To gain a better understanding of RNA editing in plant chloroplast, in this study, based on publicly available RNA-seq data across three plant lineages (fern, gymnosperm, and angiosperm), we provided a detailed analysis of RNA editing events in plant chloroplasts and discussed the evolution of RNA editing in land plants.ResultsThere were a total of 5,389 editing sites located in leaf chloroplast identified across 21 plants after rigorous screening. We found that the cluster of RNA editing sites across 21 plants complied with the phylogenetic tree based on linked protein sequences approximately, and majority (∼ 95%) of the editing events resulted in non-synonymous codon changes, RNA editing occurred in second codon position was mainly the largest. Additionally, RNA editing caused an overall increase in hydrophobicity of the resulting proteins. The analyses also revealed that there is an uneven distribution of editing sites among species, genes, and codon positions, the average RNA editing extent varied among different plant species as well as genes. Finally, we found that the loss of editing sites along angiosperm evolution is mainly occurring by reduce of cytosines content, fern plants has the highest cytosine content, with the evolution of plants, cytosine were lost in RNA edited genes.ConclusionsMany of the identified sites in our study have not been previously reported and represent a valuable data set for future research community. Our findings provide valuable information for evolution of RNA editing in plants.


2016 ◽  
Author(s):  
Peijie Lin ◽  
Michael Troup ◽  
Joshua W. K. Ho

Most existing dimensionality reduction and clustering packages for single-cell RNA-Seq (scRNA-Seq) data deal with dropouts by heavy modelling and computational machinery. Here we introduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast algorithm which uses a novel yet very simple ‘implicit imputation’ approach to alleviate the impact of dropouts in scRNA-Seq data in a principled manner. Using a range of simulated and real data, we have shown that CIDR improves the standard principal component analysis and outperforms the state-of-the-art methods, namely t-SNE, ZIFA and RaceID, in terms of clustering accuracy. CIDR typically completes within seconds for processing a data set of hundreds of cells, and minutes for a data set of thousands of cells. CIDR can be downloaded at https://github.org/VCCRI/CIDR.


Sign in / Sign up

Export Citation Format

Share Document