scholarly journals The Role of the Wnt/PCP Formin Daam1 in Renal Ciliogenesis

2019 ◽  
Author(s):  
Mark E. Corkins ◽  
Vanja Krneta-Stankic ◽  
Malgorzata Kloc ◽  
Pierre D. McCrea ◽  
Andrew B. Gladden ◽  
...  

ABSTRACTKidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1’s effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein IFT88. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. This data suggests a new role for Daam1 in the formation of primary cilia.

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Moonsup Lee ◽  
Kunio Nagashima ◽  
Jaeho Yoon ◽  
Jian Sun ◽  
Ziqiu Wang ◽  
...  

Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66727 ◽  
Author(s):  
Na Luo ◽  
Akhilesh Kumar ◽  
Michael Conwell ◽  
Robert N. Weinreb ◽  
Ryan Anderson ◽  
...  

Author(s):  
Ondrej Bernatik ◽  
Petra Paclikova ◽  
Anna Kotrbova ◽  
Vitezslav Bryja ◽  
Lukas Cajanek

Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.


2018 ◽  
Vol 29 (10) ◽  
pp. 1178-1189 ◽  
Author(s):  
Thibaut Eguether ◽  
Fabrice P. Cordelieres ◽  
Gregory J. Pazour

The vertebrate hedgehog pathway is organized in primary cilia, and hedgehog components relocate into or out of cilia during signaling. Defects in intraflagellar transport (IFT) typically disrupt ciliary assembly and attenuate hedgehog signaling. Determining whether IFT drives the movement of hedgehog components is difficult due to the requirement of IFT for building cilia. Unlike most IFT proteins, IFT27 is dispensable for cilia formation but affects hedgehog signaling similarly to other IFTs, allowing us to examine its role in the dynamics of signaling. Activating signaling at points along the pathway in Ift27 mutant cells showed that IFT is extensively involved in the pathway. Similar analysis of Bbs mutant cells showed that BBS proteins participate at many levels of signaling but are not needed to concentrate Gli transcription factors at the ciliary tip. Our analysis showed that smoothened delivery to cilia does not require IFT27, but the role of other IFTs is not known. Using a rapamycin-induced dimerization system to sequester IFT-B proteins at the mitochondria in cells with fully formed cilia did not affect the delivery of Smo to cilia, suggesting that this membrane protein may not require IFT-B for delivery.


2021 ◽  
Author(s):  
Hyunjoon Kim ◽  
Soohyun Jang ◽  
Young-suk Lee

Fat Mass and Obesity-related (FTO) gene is associated with a diverse set of human diseases. Yet, the functional landscape of FTO remains largely unknown, most likely owing to its wide range of mechanistic roles and cell-type-specific targets. Here, we discover the intricate role of FTO in multiple WNT signaling pathways. Re-analyses of public data identified the bifurcation of canonical and noncanonical WNT pathways as the major role of FTO. In FTO-depleted cells, we find that the canonical WNT/β-Catenin signaling is inhibited in a non-cell autonomous manner via the upregulation of DKK1. Simultaneously, this upregulation of DKK1 promotes cell migration via activating the noncanonical WNT/PCP pathway. Unexpectedly, we also find that the canonical WNT/STOP signaling induces the accumulation of cytoplasmic FTO proteins. This subsequently leads to the stabilization of mRNAs via RNA demethylation, revealing a previously uncharacterized mode of WNT action in RNA regulation. Altogether, this study places the functional context of FTO at the branching point of multiple WNT signaling pathways which may explain the wide spectrum of FTO functions.


2017 ◽  
Author(s):  
Thibaut Eguether ◽  
Fabrice P Cordelieres ◽  
Gregory J Pazour

AbstractThe vertebrate hedgehog pathway is organized in primary cilia and hedgehog components relocate into or out of cilia during signaling. Defects in intraflagellar transport (IFT) typically disrupt ciliary assembly and attenuate hedgehog signaling. Determining if IFT drives the movement of hedgehog components is difficult due to the requirement of IFT for building cilia. Unlike most IFT proteins, IFT27 is dispensable for cilia formation but affects hedgehog signaling similar to other IFTs allowing us to examine its role in the dynamics of signaling. Activating signaling at points along the pathway inIft27mutant cells showed that IFT is extensively involved in the pathway. Similar analysis ofBbsmutant cells showed that BBS proteins participate at many levels of signaling but are not needed to concentrate Gli transcription factors at the ciliary tip. Our analysis showed that smoothened delivery to cilia does not require IFT27, but the role of other IFTs is not known. Using a rapamycin-induced dimerization system to stop IFT after ciliary assembly was complete we show that smoothened delivery to cilia is IFT independent.AbbreviationsMEFsmouse embryonic fibroblastsSAGsmoothen agonistIFTintraflagellar transportFKBPFK506 Binding Protein 12FRBFKBP12-rapamycin binding


2021 ◽  
Vol 15 ◽  
Author(s):  
Soo Mi Ki ◽  
Hui Su Jeong ◽  
Ji Eun Lee

Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Okitsu ◽  
Mamoru Nagano ◽  
Takahiro Yamagata ◽  
Chizuru Ito ◽  
Kiyotaka Toshimori ◽  
...  

Abstract Deleted in lung and esophageal cancer 1 (DLEC1) is a tumour suppressor gene that is downregulated in various cancers in humans; however, the physiological and molecular functions of DLEC1 are still unclear. This study investigated the critical role of Dlec1 in spermatogenesis and male fertility in mice. Dlec1 was significantly expressed in testes, with dominant expression in germ cells. We disrupted Dlec1 in mice and analysed its function in spermatogenesis and male fertility. Dlec1 deletion caused male infertility due to impaired spermatogenesis. Spermatogenesis progressed normally to step 8 spermatids in Dlec1−/− mice, but in elongating spermatids, we observed head deformation, a shortened tail, and abnormal manchette organization. These phenotypes were similar to those of various intraflagellar transport (IFT)-associated gene-deficient sperm. In addition, DLEC1 interacted with tailless complex polypeptide 1 ring complex (TRiC) and Bardet–Biedl Syndrome (BBS) protein complex subunits, as well as α- and β-tubulin. DLEC1 expression also enhanced primary cilia formation and cilia length in A549 lung adenocarcinoma cells. These findings suggest that DLEC1 is a possible regulator of IFT and plays an essential role in sperm head and tail formation in mice.


2020 ◽  
Author(s):  
Ondrej Bernatik ◽  
Petra Paclikova ◽  
Anna Kotrbova ◽  
Vitezslav Bryja ◽  
Lukas Cajanek

Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However gaps exist in our understanding of how cilia formation and function is regulated.Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin.To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6 or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis.These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.


2008 ◽  
Vol 183 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Julie A. Jonassen ◽  
Jovenal San Agustin ◽  
John A. Follit ◽  
Gregory J. Pazour

Primary cilia project from the surface of most vertebrate cells and are thought to be sensory organelles. Defects in primary cilia lead to cystic kidney disease, although the ciliary mechanisms that promote and maintain normal renal function remain incompletely understood. In this work, we generated a floxed allele of the ciliary assembly gene Ift20. Deleting this gene specifically in kidney collecting duct cells prevents cilia formation and promotes rapid postnatal cystic expansion of the kidney. Dividing collecting duct cells in early stages of cyst formation fail to properly orient their mitotic spindles along the tubule, whereas nondividing cells improperly position their centrosomes. At later stages, cells lacking cilia have increased canonical Wnt signaling and increased rates of proliferation. Thus, IFT20 functions to couple extracellular events to cell proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document