scholarly journals B cell tetherin: a flow-cytometric cell-specific assay for response to Type-I interferon predicts clinical features and flares in SLE

2019 ◽  
Author(s):  
Yasser M. El-Sherbiny ◽  
Md. Yuzaiful Md. Yusof ◽  
Antonios Psarras ◽  
Elizabeth M. A. Hensor ◽  
Kumba Z. Kabba ◽  
...  

ABSTRACTObjectiveType I interferon (IFN-I) responses are broadly associated with autoimmune disease including SLE. Given the cardinal role of autoantibodies in SLE, we investigated whether a B lineage cell-specific IFN assay might correlate with SLE activity.MethodsB cells and PBMCs were stimulated with IFN-I and IFN-II. Gene expression was scrutinised for pathway-related membrane protein expression. A flow-cytometric assay for tetherin (CD317), an IFN-induced protein ubiquitously expressed on leucocytes, was validated in vitro then clinically against SLE diagnosis, plasmablast expansion, and BILAG-2004 score in a discovery cohort (156 SLE; 30 RA; 22 healthy controls). A second longitudinal validation cohort of 80 patients was also evaluated for SLE flare prediction.ResultsIn vitro, a close cell-specific and dose-responsive relationship between IFN-I responsive genes and cell surface tetherin in all immune subsets existed. Tetherin expression was selectively responsive to the IFN-I compared to IFN-II and -III. In the discovery cohort memory B-cell tetherin was best associated with diagnosis (SLE/HC: effect size=0.11, p=0.003;SLE/RA: effect size=0.17, p<0.001); plasmablast numbers in rituximab-treated patients (Rho=0.38, p=0.047) and BILAG-2004. Association were equivalent or stronger than interferon score or monocyte tetherin. The validation cohort confirmed this relationship with memory B-cell tetherin predictive of future clinical flares (Hazard Ratio=2.29 (1.01–4.64), p=0.022).ConclusionMemory B cell surface tetherin, a reflection of cell-specific IFN response in a convenient flow cytometric assay, was associated with SLE diagnosis, disease activity and predicted flares better than other cell subsets or whole blood assays in independent validation cohorts.

2007 ◽  
Vol 81 (22) ◽  
pp. 12525-12534 ◽  
Author(s):  
Anne Woods ◽  
Fanny Monneaux ◽  
Pauline Soulas-Sprauel ◽  
Sylviane Muller ◽  
Thierry Martin ◽  
...  

ABSTRACT The link between infection and autoimmunity is not yet well understood. This study was designed to evaluate if an acute viral infection known to induce type I interferon production, like influenza, can by itself be responsible for the breakdown of immune tolerance and for autoimmunity. We first tested the effects of influenza virus on B cells in vitro. We then infected different transgenic mice expressing human rheumatoid factors (RF) in the absence or in the constitutive presence of the autoantigen (human immunoglobulin G [IgG]) and young lupus-prone mice [(NZB × NZW)F1] with influenza virus and looked for B-cell activation. In vitro, the virus induces B-cell activation through type I interferon production by non-B cells but does not directly stimulate purified B cells. In vivo, both RF and non-RF B cells were activated in an autoantigen-independent manner. This activation was abortive since IgM and IgM-RF production levels were not increased in infected mice compared to uninfected controls, whether or not anti-influenza virus human IgG was detected and even after viral rechallenge. As in RF transgenic mice, acute viral infection of (NZB × NZW)F1 mice induced only an abortive activation of B cells and no increase in autoantibody production compared to uninfected animals. Taken together, these experiments show that virus-induced acute type I interferon production is not able by itself to break down B-cell tolerance in both normal and autoimmune genetic backgrounds.


2020 ◽  
Vol 72 (5) ◽  
pp. 769-779
Author(s):  
Yasser M. El‐Sherbiny ◽  
Md Yuzaiful Md Yusof ◽  
Antonios Psarras ◽  
Elizabeth M. A. Hensor ◽  
Kumba Z. Kabba ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


2020 ◽  
Author(s):  
Sarthak Gupta ◽  
Shuichiro Nakabo ◽  
Jun Chu ◽  
Sarfaraz Hasni ◽  
Mariana J. Kaplan

AbstractObjectivesAnti-type I interferon (IFN) autoantibodies have been reported in patients with systemic lupus erythematosus (SLE). Recently, an association of these autoantibodies with severe COVID-19 was reported in the general population. We assessed whether having pre-existing anti-IFNα autoantibodies was associated with COVID-19 infection in SLE patients.MethodsPatients with SLE who developed COVID-19 between April 1st to October 1st, 2020 were studied. Biobanked pre-COVID-19 plasma from these SLE subjects and healthy controls were tested for anti-IFNα IgG autoantibodies by ELISA. The ability of plasma anti-IFNα autoantibodies to block signal transducer and activator of transcription 1 (STAT1) phosphorylation by recombinant human IFNα in vitro was assessed by flow cytometry.ResultsTen SLE subjects with COVID-19 were identified. A 40% of these subjects had stable autoantibodies against IFNα for up to three years preceding COVID-19 diagnosis. A 50% of the subjects with these autoantibodies neutralized IFNα induced STAT1 phosphorylation.None of the other SLE samples blocked IFNα signaling.ConclusionsWe noted an increased prevalence of pre-existing anti-IFNα autoantibodies in SLE patients with COVID-19 compared to the reported prevalence in lupus patients and the general population with severe COVID-19. Autoantibodies against IFNα in SLE patients may be pathogenic and patients with them maybe at-risk of developing COVID-19.Key MessagesWhat is already known about this subject?-Anti-type I interferon (IFN) autoantibodies have been reported in patients with systemic lupus erythematosus (SLE) and have recently been associated with severe COVID-19 in the general population.What does this study add?-SLE subjects with COVID-19 had an increased prevalence of pre-existing anti-IFNα autoantibodies compared to the reported prevalence in lupus patients and the general population with severe COVID-19.-Plasma from 50% of subjects with these autoantibodies were able to block in vitro activity of IFNα.-SLE patients with pre-existing anti-IFNα autoantibodies had more severe COVID-19 manifestations.How might this impact on clinical practice or future developments?-Anti-IFNα autoantibodies may be pathogenic and could prove to be a helpful prognostic marker to predict which SLE patient may develop COVID-19 and inform preventive measures and management of this subset of patients.


2015 ◽  
Vol 89 (9) ◽  
pp. 4748-4759 ◽  
Author(s):  
Haifeng C. Xu ◽  
Jun Huang ◽  
Vishal Khairnar ◽  
Vikas Duhan ◽  
Aleksandra A. Pandyra ◽  
...  

ABSTRACTThe B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169+macrophage compartment. Consequently,Baffr−/−mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells inBaffr−/−animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169+cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections.IMPORTANCEViruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169+macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR-competent controls. As a result, BAFFR-deficient mice were predisposed to fatal viral infections. Thus, BAFFR expression is critical for innate immune activation and antiviral immunity.


2019 ◽  
Vol 12 (571) ◽  
pp. eaao7194 ◽  
Author(s):  
Isabel Wilhelm ◽  
Ella Levit-Zerdoun ◽  
Johanna Jakob ◽  
Sarah Villringer ◽  
Marco Frensch ◽  
...  

Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL fromBurkholderia ambifariaand LecB fromPseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.


2019 ◽  
Vol 101 ◽  
pp. 1-16 ◽  
Author(s):  
Martina Severa ◽  
Fabiana Rizzo ◽  
Sundararajan Srinivasan ◽  
Marco Di Dario ◽  
Elena Giacomini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document