scholarly journals Stress-Induced Transcriptional Memory Accelerates Promoter-Proximal Pause-Release and Decelerates Termination over Mitotic Divisions

2019 ◽  
Author(s):  
Anniina Vihervaara ◽  
Dig Bijay Mahat ◽  
Samu V. Himanen ◽  
Malin A.H. Blom ◽  
John T. Lis ◽  
...  

SummaryHeat shock triggers an instant reprogramming of gene and enhancer transcription, but whether cells encode a memory to stress, at the level of nascent transcription, has remained unknown. Here, we measured transcriptional response to acute heat stress in unconditioned cells and in daughters of cells that had been exposed to a single or multiple heat shocks. Tracking RNA Polymerase II (Pol II) genome-wide at nucleotide-resolution revealed that cells precisely remember their transcriptional identity throughout stress, restoring Pol II distribution at gene bodies and enhancers upon recovery. However, single heat shock primed faster gene-induction in the daughter cells by increasing promoter-proximal Pol II pausing, and accelerating the pause-release. In repeatedly stressed cells, both basal and inducible transcription was refined, and pre-mRNA processing decelerated, which retained transcripts on chromatin and reduced recycling of the transcription machinery. These results mechanistically uncovered how the steps of pause-release and termination maintain transcriptional memory over mitosis.Highlights-Cell type-specific transcription precisely recovers after heat-induced reprogramming-Single heat shock primes genes for accelerated induction over mitotic divisionsviaincreased promoter-proximal Pol II pausing and faster pause-release-Multiple heat shocks refine basal and inducible transcription over mitotic divisions to support survival of the daughter cells-Decelerated termination at active genes reduces recycling of Pol II to heat-activated promoters and enhancers-HSF1 increases the rate of promoter-proximal pause-releaseviadistal and proximal regulatory elements

2020 ◽  
Author(s):  
Nicolle A. Rosa-Mercado ◽  
Joshua T. Zimmer ◽  
Maria Apostolidi ◽  
Jesse Rinehart ◽  
Matthew D. Simon ◽  
...  

SummaryStress-induced readthrough transcription results in the synthesis of thousands of downstream-of-gene (DoG) containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse-seq revealed that hyperosmotic stress induces widespread transcriptional repression. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP-seq confirmed that the stress-induced redistribution of RNA Polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While subunits of the cleavage and polyadenylation machinery remained Pol II-associated, Integrator complex subunits dissociated from Pol II under stress conditions. Depleting the catalytic subunit of the Integrator complex, Int11, using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription.In briefRosa-Mercado et al. report that hyperosmotic stress causes widespread transcriptional repression in human cells, yet DoGs arise regardless of the transcriptional response of their upstream genes. They find that the interaction between Pol II and Integrator is disrupted by hypertonicity and that knocking down the Integrator nuclease leads to DoG production.HighlightsHyperosmotic stress triggers transcriptional repression of many genes.DoG RNAs arise independent of the transcriptional level of their upstream gene.The interaction between Pol II and Integrator subunits decreases after salt stress.Depletion of the Int11 nuclease subunit induces the production of hundreds of DoGs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Yu. Mazina ◽  
Elena V. Kovalenko ◽  
Nadezhda E. Vorobyeva

AbstractFor many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.


2021 ◽  
pp. gr.275750.121
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Elisabeth R. Knoll ◽  
Emily Paul ◽  
David Landsman ◽  
...  

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates pre-initiation complex (PIC) assembly, only transiently prior to Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions. However, while Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1∆ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


2021 ◽  
Vol 118 (6) ◽  
pp. e2007450118
Author(s):  
Peiyuan Feng ◽  
An Xiao ◽  
Meng Fang ◽  
Fangping Wan ◽  
Shuya Li ◽  
...  

RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gene expression regulation. Characterizing the transcriptional elongation dynamics can thus help us understand many essential biological processes in eukaryotic cells. However, experimentally measuring Pol II elongation rates is generally time and resource consuming. We developed PEPMAN (polymerase II elongation pausing modeling through attention-based deep neural network), a deep learning-based model that accurately predicts Pol II pausing sites based on the native elongating transcript sequencing (NET-seq) data. Through fully taking advantage of the attention mechanism, PEPMAN is able to decipher important sequence features underlying Pol II pausing. More importantly, we demonstrated that the analyses of the PEPMAN-predicted results around various types of alternative splicing sites can provide useful clues into understanding the cotranscriptional splicing events. In addition, associating the PEPMAN prediction results with different epigenetic features can help reveal important factors related to the transcription elongation process. All these results demonstrated that PEPMAN can provide a useful and effective tool for modeling transcription elongation and understanding the related biological factors from available high-throughput sequencing data.


2021 ◽  
Author(s):  
Samu V Himanen ◽  
Mikael C Puustinen ◽  
Alejandro J Da Silva ◽  
Anniina Vihervaara ◽  
Lea Sistonen

Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 and HSF2 trans-activate genes independently of each other, demonstrating, for the first time, that HSF2 is a bona fide transcription factor. Taken together, we show that HSFs function as multi-stress-responsive factors that activate specific genes and enhancers when encountering changes in temperature and redox state.


1999 ◽  
Vol 77 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Sébastien B Lavoie ◽  
Alexandra L Albert ◽  
Alain Thibodeau ◽  
Michel Vincent

The phosphorylation of the carboxy-terminal domain of the largest subunit of RNA polymerase II plays an important role in the regulation of transcriptional activity and is also implicated in pre-mRNA processing. Different stresses, such as a heat shock, induce a marked alteration in the phosphorylation of this domain. The expression of stress genes by RNA polymerase II, to the detriment of other genes, could be attributable to such modifications of the phosphorylation sites. Using two phosphodependent antibodies recognizing distinct hyperphosphorylated forms of RNA polymerase II largest subunit, we studied the phosphorylation state of the subunit in different species after heat shocks of varying intensities. One of these antibodies, CC-3, preferentially recognizes the carboxy-terminal domain of the largest subunit under normal conditions, but its reactivity is diminished during stress. In contrast, the other antibody used, MPM-2, demonstrated a strong reactivity after a heat shock in most species studied. Therefore, CC-3 and MPM-2 antibodies discriminate between phosphoisomers that may be functionally different. Our results further indicate that the pattern of phosphorylation of RNA polymerase II in most species varies in response to environmental stress.Key words: RNA polymerase II, heat shock, phosphorylation, CC-3, MPM-2.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Aimee Iberg-Badeaux ◽  
Samuel Collombet ◽  
Benoit Laurent ◽  
Chris van Oevelen ◽  
Kuo-Kai Chin ◽  
...  

ABSTRACT Short-term and long-term transcriptional memory is the phenomenon whereby the kinetics or magnitude of gene induction is enhanced following a prior induction period. Short-term memory persists within one cell generation or in postmitotic cells, while long-term memory can survive multiple rounds of cell division. We have developed a tissue culture model to study the epigenetic basis for long-term transcriptional memory (LTTM) and subsequently used this model to better understand the epigenetic mechanisms that enable heritable memory of temporary stimuli. We find that a pulse of transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) induces LTTM on a subset of target genes that survives nine cell divisions. The chromatin landscape at genes that acquire LTTM is more repressed than at those genes that do not exhibit memory, akin to a latent state. We show through chromatin immunoprecipitation (ChIP) and chemical inhibitor studies that RNA polymerase II (Pol II) elongation is important for establishing memory in this model but that Pol II itself is not retained as part of the memory mechanism. More generally, our work reveals that a transcription factor involved in lineage specification can induce LTTM and that failure to rerepress chromatin is one epigenetic mechanism underlying transcriptional memory.


2020 ◽  
Vol 117 (33) ◽  
pp. 19888-19895
Author(s):  
Haolin Liu ◽  
Srinivas Ramachandran ◽  
Nova Fong ◽  
Tzu Phang ◽  
Schuyler Lee ◽  
...  

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown. We previously reported that JMJD5 could generate tailless nucleosomes at position +1 from transcription start sites (TSS), thus perhaps enable progression of Pol II. Here we find that knockout of JMJD5 leads to accumulation of nucleosomes at position +1. Absence of JMJD5 also results in loss of or lowered transcription of a large number of genes. Interestingly, we found that phosphorylation, by CDK9, of Ser2 within two neighboring heptad repeats in the carboxyl-terminal domain of Pol II, together with phosphorylation of Ser5 within the second repeat, HR-Ser2p (1, 2)-Ser5p (2) for short, allows Pol II to bind JMJD5 via engagement of the N-terminal domain of JMJD5. We suggest that these events bring JMJD5 near the nucleosome at position +1, thus allowing JMJD5 to clip histones on this nucleosome, a phenomenon that may contribute to release of Pol II pausing.


Blood ◽  
2016 ◽  
Vol 128 (13) ◽  
pp. 1701-1710 ◽  
Author(s):  
Qiwen Yang ◽  
Xiuli Liu ◽  
Ting Zhou ◽  
Jennifer Cook ◽  
Kim Nguyen ◽  
...  

Key Points Pol II pausing is required for HSC emergence in zebrafish embryos. TGFβ and IFN-γ signaling are oppositely regulated by Pol II pausing to regulate HSC emergence.


2019 ◽  
Author(s):  
Carlos Perea-Resa ◽  
Leah Bury ◽  
Iain Cheeseman ◽  
Michael D. Blower

SummaryEntering mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA Polymerase II (RNAPII) in mitosis. Here, we demonstrate that chromatin-bound cohesin is sufficient to retain RNAPII at centromeres while WAPL-mediated removal of cohesin during prophase is required for RNAPII dissociation from chromosome arms. Failure to remove cohesin from chromosome arms results in a failure to release elongating RNAPII and nascent transcripts from mitotic chromosomes and dramatically alters gene expression. We propose that prophase cohesin removal is the key step in reprogramming gene expression as cells transition from G2 to mitosis, and is temporally coupled with chromosome condensation to coordinate chromosome segregation with changes in gene expression.HighlightsMitotic centromere transcription requires cohesinCohesin removal releases elongating RNA Pol II and nascent RNA from chromatinThe prophase pathway reprograms gene expression during mitosis


Sign in / Sign up

Export Citation Format

Share Document