scholarly journals Myelin development in visual scene-network tracts beyond late childhood: A multimethod neuroimaging study

2019 ◽  
Author(s):  
Tobias W Meissner ◽  
Erhan Genç ◽  
Burkhard Mädler ◽  
Sarah Weigelt

The visual scene-network - comprising the parahippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area (OPA) - shows a prolonged functional development. Structural development of white matter that underlies the scene-network has not been investigated despite its potential influence on scene-network function. The key factor for white matter maturation is myelination. However, research on myelination using the gold standard method of post-mortem histology is scarce. In vivo alternatives diffusion-weighed imaging (DWI) and myelin water imaging (MWI) so far report broad-scale findings that prohibit inferences concerning the scene-network. Here, we combine MWI, DWI tractography, and fMRI to investigate myelination in scene-network tracts in middle childhood, late childhood, and adulthood. We report increasing myelin from middle childhood to adulthood in right PPA-OPA, and trends towards increases in the left and right RSC-OPA tracts. Investigating tracts to regions highly connected with the scene-network, such as early visual cortex and the hippocampus did not yield any significant age group differences. Our findings indicate that structural development coincides with functional development in the scene-network, possibly enabling structure-function interactions.

2019 ◽  
Author(s):  
Tobias W. Meissner ◽  
Erhan Genç ◽  
Burkhard Mädler ◽  
Sarah Weigelt

AbstractAxonal myelination is a key white matter maturation process as it increases conduction velocity, synchrony, and reliability. While diffusion tensor imaging (DTI) is sensitive to myelination, it is also sensitive to unrelated microstructural properties, thus hindering straightforward interpretations. Myelin water imaging (MWI) provides a more reliable and direct in vivo measure of myelination. Although early histological studies show protracted myelination from childhood to adulthood, reliable tract-specific in vivo evidence from MWI is still lacking. Here, we combine MWI and DTI tractography to investigate myelination in middle childhood, late childhood, and adulthood in 18 major white matter tracts. In the vast majority of major white matter tracts, myelin water fraction continued to increase beyond late childhood. Our study provides first in vivo evidence for protracted myelination beyond late childhood.


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Sara Kierońska ◽  
Milena Świtońska ◽  
Grzegorz Meder ◽  
Magdalena Piotrowska ◽  
Paweł Sokal

Fiber tractography based on diffuse tensor imaging (DTI) can reveal three-dimensional white matter connectivity of the human brain. Tractography is a non-invasive method of visualizing cerebral white matter structures in vivo, including neural pathways surrounding the ischemic area. DTI may be useful for elucidating alterations in brain connectivity resulting from neuroplasticity after stroke. We present a case of a male patient who developed significant mixed aphasia following ischemic stroke. The patient had been treated by mechanical thrombectomy followed by an early rehabilitation, in conjunction with transcranial direct current stimulation (tDCS). DTI was used to examine the arcuate fasciculus and uncinate fasciculus upon admission and again at three months post-stroke. Results showed an improvement in the patient’s symptoms of aphasia, which was associated with changes in the volume and numbers of tracts in the uncinate fasciculus and the arcuate fasciculus.


2009 ◽  
Vol 38 (2) ◽  
pp. 149-154 ◽  
Author(s):  
A.J. Patterson ◽  
J.M. U-King-Im ◽  
T.Y. Tang ◽  
D.J. Scoffings ◽  
S.P.S. Howarth ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xinfeng Yu ◽  
Xinzhen Yin ◽  
Hui Hong ◽  
Shuyue Wang ◽  
Yeerfan Jiaerken ◽  
...  

Abstract Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.


2017 ◽  
Vol 13 (7S_Part_16) ◽  
pp. P794-P795
Author(s):  
Arman P. Kulkarni ◽  
Arnold M. Evia ◽  
Julie A. Schneider ◽  
David A. Bennett ◽  
Konstantinos Arfanakis

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Dongsun Park ◽  
Kyungha Shin ◽  
Ehn-Kyoung Choi ◽  
Youngjin Choi ◽  
Ja-Young Jang ◽  
...  

Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects ofN-acetyl-L-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats.Methods. Inin vitrostudy, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. Inin vivostudy, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed.Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE.Conclusion. The results indicate that NAC exerts neuroprotective effectsin vitroandin vivoby preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Baayla D C Boon ◽  
Petra J W Pouwels ◽  
Laura E Jonkman ◽  
Matthijs J Keijzer ◽  
Paolo Preziosa ◽  
...  

Abstract Post-mortem in situ MRI has been used as an intermediate between brain histo(patho)logy and in vivo imaging. However, it is not known how comparable post-mortem in situ is to ante-mortem imaging. We report the unique situation of a patient with familial early-onset Alzheimer’s disease due to a PSEN1 mutation, who underwent ante-mortem brain MRI and post-mortem in situ imaging only 4 days apart. T1-weighted and diffusion MRI was performed at 3-Tesla at both time points. Visual atrophy rating scales, brain volume, cortical thickness and diffusion measures were derived from both scans and compared. Post-mortem visual atrophy scores decreased 0.5–1 point compared with ante-mortem, indicating an increase in brain volume. This was confirmed by quantitative analysis; showing a 27% decrease of ventricular and 7% increase of whole-brain volume. This increase was more pronounced in the cerebellum and supratentorial white matter than in grey matter. Furthermore, axial and radial diffusivity decreased up to 60% post-mortem whereas average fractional anisotropy of white matter increased approximately 10%. This unique case study shows that the process of dying affects several imaging markers. These changes need to be taken into account when interpreting post-mortem MRI to make inferences on the in vivo situation.


2019 ◽  
Author(s):  
F.M. Elahi ◽  
D. Harvey ◽  
M. Altendahl ◽  
K.B. Casaletto ◽  
N. Fernandes ◽  
...  

ABSTRACTWe test the hypothesis that endothelial cells take on an inflammatory phenotype in functionally intact human subjects with radiographic evidence of white matter injury. Markers within all three complement effector pathways and regulatory proteins were quantified from endothelial-derived exosomes (EDE) of subjects (age 70-82) with (n=11) and without (n=16) evidence of white matter hyperintensity on MRI. Group differences and associations with systemic markers of immune activation (IL6, ICAM1), cognition and neuroimaging were calculated via regression modelling.EDE complement factors within the alternative and classical pathways were found to be higher and regulatory proteins lower in subjects with WMH. EDE levels of several factors demonstrated significant associations with cognitive slowing and systolic blood pressure. The inhibitor of the membrane attack complex, CD46, showed a significant positive association with cerebral grey matter volume. Systemic inflammatory markers, IL6 and ICAM1, were positively associated with EDE levels of several factors.These findings provide the first in vivo evidence of the association of endothelial cell inflammation with white matter injury, cognition, and brain degeneration in functionally normal older individuals, and form the basis for future biomarker development in early or preclinical stages of vascular cognitive impairment and dementia.


Sign in / Sign up

Export Citation Format

Share Document