scholarly journals Inhibition of neutral sphingomyelinase-2 facilitates remyelination

2019 ◽  
Author(s):  
Seung-Wan Yoo ◽  
Amit Agarwal ◽  
Matthew D. Smith ◽  
Saja S. Khuder ◽  
Emily G. Baxi ◽  
...  

AbstractFor reasons that are not completely understood, remyelination is often incomplete, producing thin myelin sheaths with disorganized structure. We investigated the cellular basis for this altered myelin structure, and found that the response of oligodendrocyte progenitor cells (OPCs), and mature oligodendrocytes to TNFα and IL-1β is modified by the expression of the sphingomyelin hydrolase nSMase2. OPCs do not express nSMase2, and exhibit a protective response to these cytokines manifest by decreased ceramide, increased sphingosine 1-phosphate, and increased cell motility. Mature oligodendrocytes express nSMase2, and respond to TNFα and IL-1β with a stress phenotype, evidenced by increased ceramide, decreased sphingosine, and active caspase 3. Pharmacological inhibition or a targeted genetic deletion of nSMase2in vivoincreased myelin thickness, and enhanced myelin compaction. These results suggest that inhibition of nSMase2 improves the quality of new myelin by protecting maturing/myelinating oligodendrocytes. Pharmacological inhibition of nSMase2 following a demyelinating event could stabilize the structure of these newly formed myelin sheaths and protect them from secondary demyelination.


2020 ◽  
Vol 6 (40) ◽  
pp. eaba5210
Author(s):  
Seung-Wan Yoo ◽  
Amit Agarwal ◽  
Matthew D. Smith ◽  
Saja S. Khuder ◽  
Emily G. Baxi ◽  
...  

Myelination requires a highly organized synthesis of multiple lipid species that regulate myelin curvature and compaction. For reasons that are not understood, central nervous system remyelinated axons often have thin myelin sheaths with a disorganized structure susceptible to secondary demyelination. We found that expression of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) during the differentiation of oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes changes their response to inflammatory cytokines. OPCs do not express nSMase2 and exhibit a protective/regenerative response to tumor necrosis factor–α and interleukin-1β. Oligodendrocytes express nSMase2 and exhibit a stress response to cytokine challenge that includes an overproduction of ceramide, a sphingolipid that forms negative curvatures in membranes. Pharmacological inhibition or genetic deletion of nSMase2 in myelinating oligodendrocytes normalized the ceramide content of remyelinated fibers and increased thickness and compaction. These results suggest that inhibition of nSMase2 could improve the quality of myelin and stabilize structure.



2019 ◽  
Author(s):  
AM Golding-Ochsenbein ◽  
S Vidal ◽  
B Wilmering Wetter ◽  
C Guibourdenche ◽  
C Beerli ◽  
...  

AbstractSphingosine-1-phosphate (S1P), a lipid signaling molecule produced by endothelial cells, is required for development and homeostasis of blood vessels. However, its role during lymphatic vessel development is unclear. We show in murine newborns that pharmacologically enhanced S1P signaling increases VEGF-A-dependent LEC proliferation. In contrast, S1PR1 inhibition, mediated by the antagonist NIBR0213 or LEC-specific genetic deletion of S1pr1, promotes filopodia formation and vessel branching, independent of VEGF-A. To investigate the S1P and VEGF-A signaling crosstalk observed in vivo, we used LECs cultured in vitro. We demonstrate that S1P activates endogenous S1PR1 in a constitutive, autocrine manner. Importantly, S1P-S1PR1 activity was required for VEGF-A-induced LEC proliferation and strongly supported ERK1/2 activation and VEGFR-2 trafficking to the perinuclear area. In conclusion, S1P-S1PR1 signaling promotes VEGF-A-dependent LEC proliferation and limits migratory and filopodia-forming responses. Hence, S1P-S1PR1 signaling is required for balanced growth factor-induced lymphangiogenesis and correctly patterned lymphatic vessels during postnatal development.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 234-234
Author(s):  
Qingrong Huang ◽  
Shan He ◽  
Yuanyuan Tian ◽  
Changhong Li ◽  
Yuting Gu ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). GVHD involves complex interactions of immune cells, induction of host-reactive donor effector T cells, and donor T cell-mediated injury to normal tissues. Epigenetic changes have been implicated in T cell-mediated GVHD. We previously described that genetic deletion of Ezh2, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3), reduced GVHD in mice but preserved graft-versus-leukemia (GVL) responses. Several selective inhibitors of Ezh2 have been recently discovered (e.g. GSK126, UNC1999 and EPZ6438), which specifically reduce the levels of H3K27me3 but not EZH2 protein. Unexpectedly, our preliminary studies showed that administration of GSK126 failed to prevent GVHD in mice. This stands in contrast to our findings that genetic deletion of T cell Ezh2 leads to GVHD inhibition, and suggest that Ezh2 may regulate GVHD through a mechanism independent of H3K27me3. Identifying an optimal method to target T cell Ezh2 for controlling GVHD remains an unmet need. Using experimental mouse models, we demonstrate that functional heat shock protein (Hsp)90 is critical for maintaining Ezh2 protein stability and function in activated T cells. Pharmacological inhibition of Hsp90 destablizes Ezh2 protein in alloreactive T cells, reduces GVHD but preserves GVL effects in mice. To determinethe molecule(s) that is critical for maintaining Ezh2 protein stablility in T cells, we performed mass spectrum (MS) analysis and identified 25 Ezh2-interacting proteins that showed higher intensities than others in T cell receptor (TCR)-activated CD8+ T cells. Among them, we found a group of proteins associated with protein folding and degradation, including Hsp90. Hsp90 is a molecular chaperone required for the stability and function of several key signaling intermediates (e.g., AKT, Raf1 and ERK1/2). Using reciprocal co-immunoprecipitation assay, we confirmed that Ezh2 and Hsp90 directly interacted with each other in TCR-activated CD8+ T cells. Pharmacological inhibition of Hsp90 using its specific inhibitor AUY922, which is currently in phase II clinical trials for cancer therapy, effectively reduced Ezh2 protein without decreasing H3K27me3 24 hours after treatment. This effect was accompanied by decreased proliferation and survival of TCR-activated T cells in vitro. Retroviral overexpression of Ezh2 in T cells markedly improved their proliferation in the presence of AUY922, suggesting that reducing Ezh2 by Hsp90 inhibition is an important mechanism that reduces proliferation and survival of activated CD8+ T cells. Building on these observations, we examined the impact of inhibiting Hsp90 on GVHD by administering AUY922 to B6 mice receiving MHC-identical minor histocompatibility antigen-mismatched C3H.SW mouse CD8+ T cells and T cell-depleted bone marrow (BM). While about 80% of control B6 recipients died from severe GVHD, 80% of AUY922-treated B6 recipients survived without clinical signs of severe GVHD by 84 days after transplantation. In vivo AUY922 administration reduced the survival and expansion of alloreactive T cells, and decreased the fequency of alloreactive T effector cells producing IFN-g and TNF-a. To rule out the model-specific effect of AUY922, we used a haplo-identical B6 into BDF1 mouse model of GVHD. Using CFSE-labeled donor T cells, we first validated that in vivo administration of AUY922 to unirradiated BDF1 mice receiving parent B6 T cells selectively reduced the expansion of alloantigen-reactive donor T cells, but did not impair the expansion and survival of donor T cells that did not respond to alloantigens. In lethally irradiated BDF1 mice receiving B6 T cells and BM, AUY922 administration reduces lethal GVHD, with approximately 50% of them surviving long-time. Importantly, AUY922 treatment preserved GVL activity of donor T cells, leading to significantly improved survival of BDF1 recipients challenged with A20 leukemic cells (Fig.1). Taken together, our findings identified a previously unrecognized molecular mechanism by which Ezh2 and Hsp90 are integrated to regulate alloreactive T cell responses and GVHD. Targeting the Ezh2-Hsp90 complex using AUY922 represents a novel and clinically relevant approach to reduce GVHD while preserving GVL effects, thereby improving the efficacy of allo-HSCT. Disclosures No relevant conflicts of interest to declare.



2021 ◽  
Author(s):  
Ezzat Hashemi ◽  
Hsing-Chuan Tsai ◽  
Ezra Yoseph ◽  
Monica Moreno ◽  
Li-Hao Yeh ◽  
...  

Abstract Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by aberrant immune responses. The current immune modulatory therapies are unable to protect and repair the brain damage caused by the immune attack. One of the therapeutic targets for MS is the sphingosine-1-phosphate (S1P) pathways, which signals via sphingosine-1-phosphate receptors 1-5 (S1P1-5), in the CNS and immune cells. In light of the potential neuro-protective properties of S1P signaling, we utilized the S1P1-GFP (Green fluorescent protein) reporter mice in the cuprizone-induced-demyelination model, to investigate the in vivo S1P- S1P1 signaling in the CNS. We observed S1P1 signaling in a subset of neural stem cells in the subventricular zone (SVZ) during demyelination. Additionally, oligodendrocyte progenitor cells in the SVZ and mature oligodendrocytes in the medial corpus callosum (MCC) expressed S1P1 signaling during remyelination. We did not observe S1P1 signaling in neurons and astrocytes in the cuprizone model. This approach was unable to determine S1P1-GFP signaling in the myeloid cells because of their aberrant GFP expression in GFP reporter mice. Significant S1P1 signaling was observed in lymphocytes during demyelination and inflammation. Our findings reveal β-arrestin dependent S1P1 signaling in oligodendrocyte lineage cells, indicating a role of S1P1 signaling during remyelination.



Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Katharina M Michalik ◽  
Sebastian Cremer ◽  
Ariane Fischer ◽  
Marion Muhly-Reinholz ◽  
Larissa Pfisterer ◽  
...  

Long non-coding RNAs (lncRNAs) have been described to play a role in many biological processes, including epigenetic regulation of gene expression. We previously showed that the lncRNA MALAT1 regulates angiogenesis. Since MALAT1 is induced by atheroprotective laminar shear stress, we determined whether MALAT1 regulates atherosclerosis. To address this question, we generated MALAT -/- ApoE -/- mice that were fed with a high fat diet for 12 weeks. Genetic deletion of MALAT1 in ApoE-/- mice increased plaque size as defined by oil red positive area in the aortic arch (+28.4+12%; n=5, p<0.05). However, pharmacological inhibition of MALAT1 by GapmeRs, which were directed against MALAT1 and injected every second week for 12 weeks, did not significantly affect plaque load or plaque size. To explain the discrepant results, we analyzed the expression of MALAT1, which was fully deleted in all analyzed cell types and tissues obtained from MALAT1-/- mice, whereas GapmeR-MALAT1 treatment efficiently silenced MALAT1 expression in all organs except circulating and splenic monocytes. These data suggest that inhibition of MALAT1 in inflammatory cells, which is not sufficiently accomplished by MALAT1 GapmeRs, may be necessary to modulate atherosclerotic disease progression. In line with this, infiltration of CD45+ cells was significantly augmented in MALAT1-/-ApoE-/- mice (+35.5+8.6%, n = 10, p<0.05) but not in GapmeR-treated ApoE-/- mice (-5.6+12.3%, n=10, ns). Moreover, MALAT1 deletion significantly increased macrophages (+60.4+22.8%, n=10, p<0.05) and dendritic cells in the spleen (+37.4+17.5%, n=10) and augmented circulating monocytes (+70.2+70.2%, n=5, ns). In conclusion, we show that genetic deletion but not pharmacological inhibition of MALAT1 enhances atherosclerotic lesion formation and augments splenic monocytes and hematopoietic cell recruitment to atherosclerotic plaques. The causal involvement of MALAT1 expression in hematopoietic cells in atherogenesis is currently elucidated by bone marrow transplantation experiments.



2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Galluzzo ◽  
Elisa Ciraolo ◽  
Monica Lucattelli ◽  
Eriola Hoxha ◽  
Martina Ulrich ◽  
...  

Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF). Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγplays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγon airway inflammation and structural lung damage in a mouse model of CF lung disease.Methods.βENaC overexpressing mice (βENaC-Tg) were backcrossed with PI3Kγ-deficient (PI3KγKO) mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF). Furthermore, we assessed the effect of a specific PI3Kγinhibitor (AS-605240) on inflammatory cell number in BALF.Results. Genetic deletion of PI3Kγdecreased neutrophil numbers in BALF ofPI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγinhibitor AS-605240 decreased the number of neutrophils in BALF ofβENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme.Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγin reducing chronic neutrophilic inflammation in CF-like lung diseasein vivo.



2021 ◽  
Vol 15 ◽  
Author(s):  
Anne S. Maguire ◽  
Douglas R. Martin

The gangliosidoses are a family of neurodegenerative lysosomal storage diseases that have recently seen promising advances in gene therapy. White matter deficits are well established components of gangliosidosis pathology that are now receiving more attention because they are partially refractory to correction by gene therapy. After a brief synopsis of normal myelinogenesis, this review outlines current viewpoints on the origin of white matter deficits in the gangliosidoses and potential obstacles to treating them effectively by gene therapy. Dysmyelinogenesis (failure of myelin sheaths to form properly) is proposed as the predominant contributor to white matter pathology, but precise mechanistic details are not well understood. The involvement of neuronal storage deficits may extend beyond secondary demyelination (destruction of myelin due to axonal loss) and contribute to dysmyelinogenesis. Preclinical studies in animal models of the gangliosidoses have substantially improved lifespan and quality of life, leading to the initiation of several clinical trials. However, improvement of white matter pathology has lagged behind other metrics and few evidence-based explanations have been proposed to date. Research groups in the field are encouraged to include myelin-specific investigations in future gene therapy work to address this gap in knowledge.



2019 ◽  
Author(s):  
Cinzia Di Dio ◽  
Federico Manzi ◽  
Giulia Peretti ◽  
Angelo Cangelosi ◽  
Paul L. Harris ◽  
...  

Studying trust within human-robot interaction is of great importance given the social relevance of robotic agents in a variety of contexts. We investigated the acquisition, loss and restoration of trust when preschool and school-age children played with either a human or a humanoid robot in-vivo. The relationship between trust and the quality of attachment relationships, Theory of Mind, and executive function skills was also investigated. No differences were found in children’s trust in the play-partner as a function of agency (human or robot). Nevertheless, 3-years-olds showed a trend toward trusting the human more than the robot, while 7-years-olds displayed the reverse behavioral pattern, thus highlighting the developing interplay between affective and cognitive correlates of trust.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eduardo Anitua ◽  
Andreia Cerqueira ◽  
Francisco Romero-Gavilán ◽  
Iñaki García-Arnáez ◽  
Cristina Martinez-Ramos ◽  
...  

Abstract Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.



Sign in / Sign up

Export Citation Format

Share Document