scholarly journals Modeling the Interplay between Photosynthesis, CO2 Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium

2019 ◽  
Author(s):  
Adil Alsiyabi ◽  
Cheryl Immethun ◽  
Rajib Saha

AbstractRhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium (PNSB) that can fix CO2 and nitrogen or break down organic compounds for its carbon and nitrogen requirements. Light, inorganic, and organic compounds can all be used for its source of energy. Excess electrons produced during its metabolic processes can be exploited to produce hydrogen gas or biodegradable polyesters (polyhydroxybutyrate). A genome-scale metabolic model of the bacterium was reconstructed to study the interactions between photosynthesis, carbon dioxide fixation, and the redox state of the quinone pool. A comparison of model-predicted flux values with published in vivo MFA fluxes resulted in predicted errors of 5-19% across four different growth substrates. The model predicted the presence of an unidentified sink responsible for the oxidation of excess quinols generated by the TCA cycle. Furthermore, light-dependent energy production was found to be highly dependent on the rate of quinol oxidation. Finally, the extent of CO2 fixation was predicted to be dependent on the amount of ATP generated through the electron transport cycle, with excess ATP going toward the energy-demanding CBB pathway. Based on this analysis, it is hypothesized that the quinone redox state acts as a feed-forward controller of the CBB pathway, signaling the amount of ATP available.

mBio ◽  
2011 ◽  
Vol 2 (2) ◽  
Author(s):  
James B. McKinlay ◽  
Caroline S. Harwood

ABSTRACTHydrogen gas (H2) is a possible future transportation fuel that can be produced by anoxygenic phototrophic bacteria via nitrogenase. The electrons for H2are usually derived from organic compounds. Thus, one would expect more H2to be produced when anoxygenic phototrophs are supplied with increasingly reduced (electron-rich) organic compounds. However, the H2yield does not always differ according to the substrate oxidation state. To understand other factors that influence the H2yield, we determined metabolic fluxes inRhodopseudomonas palustrisgrown on13C-labeled fumarate, succinate, acetate, and butyrate (in order from most oxidized to most reduced). The flux maps revealed that the H2yield was influenced by two main factors in addition to substrate oxidation state. The first factor was the route that a substrate took to biosynthetic precursors. For example, succinate took a different route to acetyl-coenzyme A (CoA) than acetate. As a result,R. palustrisgenerated similar amounts of reducing equivalents and similar amounts of H2from both succinate and acetate, even though succinate is more oxidized than acetate. The second factor affecting the H2yield was the amount of Calvin cycle flux competing for electrons. When nitrogenase was active, electrons were diverted away from the Calvin cycle towards H2, but to various extents, depending on the substrate. When Calvin cycle flux was blocked, the H2yield increased during growth on all substrates. In general, this increase in H2yield could be predicted from the initial Calvin cycle flux.IMPORTANCEPhotoheterotrophic bacteria, likeRhodopseudomonas palustris, obtain energy from light and carbon from organic compounds during anaerobic growth. Cells can naturally produce the biofuel H2as a way of disposing of excess electrons. Unexpectedly, feeding cells organic compounds with more electrons does not necessarily result in more H2. Despite repeated observations over the last 40 years, the reasons for this discrepancy have remained unclear. In this paper, we identified two metabolic factors that influence the H2yield, (i) the route taken to make biosynthetic precursors and (ii) the amount of CO2-fixing Calvin cycle flux that competes against H2production for electrons. We show that the H2yield can be improved on all substrates by using a strain that is incapable of Calvin cycle flux. We also contributed quantitative knowledge to the long-standing question of why photoheterotrophs must produce H2or fix CO2even on relatively oxidized substrates.


2021 ◽  
Author(s):  
Sergio Bordel ◽  
Rob J. M. van Spanning ◽  
Fernando Santos-Beneit

Abstract Poly(3-hydroxybutyrate) (PHB) granule formation in Paracoccus denitrificans Pd1222 was investigated by laser scanning confocal microscopy (LSCM) and gas chromatography analysis. Cells that had been starved for 2 days were free of PHB granules but resynthesized them within 30 minutes of growth in fresh medium with succinate. In most cases, the granules were distributed randomly, although in some cases they appeared in a more organized pattern. The rates of growth and PHB accumulation were analyzed within the frame of a Genome-Scale Metabolic Model (GSMM) containing 781 metabolic genes, 1403 reactions and 1503 metabolites. The model was used to obtain quantitative predictions of biomass yields and PHB synthesis during aerobic growth on succinate as sole carbon and energy sources. The results revealed an initial fast stage of PHB accumulation, during which all of the acetyl-CoA originating from succinate was diverted to PHB production. The next stage was characterized by a tenfold lower PHB production rate and the simultaneous onset of exponential growth, during which acetyl-CoA was predominantly drained into the TCA cycle. Previous research has shown that PHB accumulation correlates with cytosolic acetyl-CoA concentration. It has also been shown that PHB accumulation is not transcriptionally regulated. Our results are consistent with the mentioned findings and suggest that, in absence of cell growth, most of the cellular acetyl-CoA is channeled to PHB synthesis, while during exponential growth, it is drained to the TCA cycle, causing a reduction of the cytosolic acetyl-CoA pool and a concomitant decrease of the synthesis of acetoacetyl-CoA (the precursor of PHB synthesis).


2016 ◽  
Author(s):  
Matthew L. Jenior ◽  
Jhansi L. Leslie ◽  
Vincent B. Young ◽  
Patrick D. Schloss

AbstractClostridium difficileis the largest single cause of hospital-acquired infection in the United States. A major risk factor forClostridium difficileinfection (CDI) is prior exposure to antibiotics, as they disrupt the gut bacterial community which protects fromC. difficilecolonization. Multiple antibiotic classes have been associated with CDI susceptibility; many leading to distinct community structures stemming from variation in bacterial targets of action. These community structures present separate metabolic challenges toC. difficile.Therefore we hypothesized that the pathogen adapts its physiology to the nutrients within different gut environments. Utilizing anin vivoCDI model, we demonstratedC. difficilehighly colonized ceca of mice pretreated with any of three antibiotics from distinct classes. Levels ofC. difficilespore formation and toxin activity varied between animals based on the antibiotic pretreatment. These physiologic processes inC. difficileare partially regulated by environmental nutrient concentrations. To investigate metabolic responses of the bacteriumin vivo, we performed transcriptomic analysis ofC. difficilefrom ceca of infected mice across pretreatments. This revealed heterogeneous expression in numerous catabolic pathways for diverse growth substrates. To assess which resourcesC. difficileexploited, we developed a genome-scale metabolic model with a transcriptome-enabled metabolite scoring algorithm integrating network architecture. This platform identified nutrientsC. difficileused preferentially between pretreatments, which were validated through untargeted mass spectrometry of each microbiome. Our results supported the hypothesis thatC. difficileinhabits alternative nutrient niches across cecal microbiomes with increased preference for nitrogen-containing carbon sources, particularly Stickland fermentation substrates and host-derived glycans.ImportanceInfection by the bacteriumClostridium difficilecauses an inflammatory diarrheal disease which can become life-threatening, and has grown to be the most prevalent nosocomial infection. Susceptibility toC. difficileinfection is strongly associated with previous antibiotic treatment, which disrupts the gut microbiota and reduces its ability to prevent colonization. In this study we demonstrated thatC. difficilealtered pathogenesis between hosts pretreated with antibiotics from separate classes, and exploited different nutrient sources across these environments. Our metabolite score calculation also provides a platform to study nutrient requirements of pathogens during an infection. Our results suggest thatC. difficilecolonization resistance is mediated by multiple groups of bacteria competing for several subsets of nutrients and could explain why total reintroduction of competitors through fecal microbial transplant currently is the most effective treatment for recurrent CDI. This work could ultimately contribute to the identification of targeted, context-dependent measures that prevent or reduceC. difficilecolonization including pre- and probiotic therapies.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergio Bordel ◽  
Rob J. M. van Spanning ◽  
Fernando Santos-Beneit

AbstractPoly(3-hydroxybutyrate) (PHB) granule formation in Paracoccus denitrificans Pd1222 was investigated by laser scanning confocal microscopy (LSCM) and gas chromatography analysis. Cells that had been starved for 2 days were free of PHB granules but resynthesized them within 30 min of growth in fresh medium with succinate. In most cases, the granules were distributed randomly, although in some cases they appeared in a more organized pattern. The rates of growth and PHB accumulation were analyzed within the frame of a Genome-Scale Metabolic Model (GSMM) containing 781 metabolic genes, 1403 reactions and 1503 metabolites. The model was used to obtain quantitative predictions of biomass yields and PHB synthesis during aerobic growth on succinate as sole carbon and energy sources. The results revealed an initial fast stage of PHB accumulation, during which all of the acetyl-CoA originating from succinate was diverted to PHB production. The next stage was characterized by a tenfold lower PHB production rate and the simultaneous onset of exponential growth, during which acetyl-CoA was predominantly drained into the TCA cycle. Previous research has shown that PHB accumulation correlates with cytosolic acetyl-CoA concentration. It has also been shown that PHB accumulation is not transcriptionally regulated. Our results are consistent with the mentioned findings and suggest that, in absence of cell growth, most of the cellular acetyl-CoA is channeled to PHB synthesis, while during exponential growth, it is drained to the TCA cycle, causing a reduction of the cytosolic acetyl-CoA pool and a concomitant decrease of the synthesis of acetoacetyl-CoA (the precursor of PHB synthesis).


2021 ◽  
Vol 22 (5) ◽  
pp. 2746
Author(s):  
Dimitri Shcherbakov ◽  
Reda Juskeviciene ◽  
Adrián Cortés Sanchón ◽  
Margarita Brilkova ◽  
Hubert Rehrauer ◽  
...  

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 762
Author(s):  
Edward V. Prochownik ◽  
Huabo Wang

Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 444
Author(s):  
Igor Florez-Sarasa ◽  
Elina Welchen ◽  
Sofia Racca ◽  
Daniel H. Gonzalez ◽  
José G. Vallarino ◽  
...  

Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.


2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 1408
Author(s):  
Magali Van den Kerkhof ◽  
Philippe Leprohon ◽  
Dorien Mabille ◽  
Sarah Hendrickx ◽  
Lindsay B. Tulloch ◽  
...  

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.


2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Sign in / Sign up

Export Citation Format

Share Document