scholarly journals Collagen hydrogel confinement of amyloid-β accelerates aggregation and reduces cytotoxic effects

2019 ◽  
Author(s):  
Laura W. Simpson ◽  
Gregory L. Szeto ◽  
Hacene Boukari ◽  
Theresa A. Good ◽  
Jennie B. Leach

AbstractAlzheimer’s disease (AD) is the most common form of dementia and is associated with the accumulation of amyloid-β (Aβ), a peptide whose aggregation has been associated with neurotoxicity. Drugs targeting Aβ have shown great promise in 2D in vitro models and mouse models, yet preclinical and clinical trials for AD have been highly disappointing. We propose that current in vitro culture systems for discovering and developing AD drugs have significant limitations; specifically, that Aβ aggregation is vastly different in these 2D cultures carried out on flat plastic or glass substrates vs. in a 3D environment, such as brain tissue, where Aβ confinement very likely alters aggregation kinetics and thermodynamics. In this work, we identified attenuation of Aβ cytotoxicity in 3D hydrogel culture compared to 2D cell culture. We investigated Aβ structure and aggregation in solution vs. hydrogel using Transmission Electron Microscopy (TEM), Fluorescence Correlation Spectroscopy (FCS), and Thioflavin T (ThT) assays. Our results reveal that the equilibrium is shifted to stable β-sheet aggregates in hydrogels and away from the relatively unstable/unstructured presumed toxic oligomeric Aβ species in solution. Volume exclusion imparted by hydrogel confinement stabilizes unfolded, presumably toxic species, promoting stable extended β-sheet fibrils. These results, taken together with the many recent reports that 3D hydrogel cell cultures enable cell morphologies and epigenetic changes that are more similar to cells in vivo compared to 2D cultures, strongly suggest that AD drugs should be tested in 3D culture systems as a step along the development pathway towards new, more effective therapeutics.

Author(s):  
Hongyu Li ◽  
Lixiong Gao ◽  
Jinlin Du ◽  
Tianju Ma ◽  
Zi Ye ◽  
...  

The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.


2016 ◽  
Author(s):  
Marina C. Cabrera ◽  
Elaine Hurt ◽  
Xiaoru Chen ◽  
Shi Xiaoqing ◽  
Haifeng Bao

2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


2017 ◽  
Vol 22 (5) ◽  
pp. 583-601 ◽  
Author(s):  
P. Marc D. Watson ◽  
Edel Kavanagh ◽  
Gary Allenby ◽  
Matthew Vassey

Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer’s and Parkinson’s disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell–cell and cell–matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2115
Author(s):  
Bo-Ram Lee ◽  
Hyeon Yang ◽  
Sang-In Lee ◽  
Inamul Haq ◽  
Sun-A Ock ◽  
...  

Intestinal organoids offer great promise for disease-modelling-based host–pathogen interactions and nutritional research for feed efficiency measurement in livestock and regenerative medicine for therapeutic purposes. However, very limited studies are available on the functional characterisation and three-dimensional (3D) expansion of adult stem cells in livestock species compared to other species. Intestinal crypts derived from intestinal organoids under a 3D culture system from the small intestine in adult bovine were successfully established and characterised for functionality testing, including the cellular potentials and genetic properties based on immunohistochemistry, immunocytochemistry, epithelial barrier permeability assay, QuantSeq 3′ mRNA-Seq. data and quantitative reverse transcription-polymerase chain reaction. Intestinal organoids were long-term cultivated over several passages of culture without loss of the recapitulating capacity of crypts, and they had the specific expression of several specific markers involved in intestinal stem cells, intestinal epithelium, and nutrient absorption. In addition, they showed the key functionality with regard to a high permeability for compounds of up to FITC-dextran 4 kDa, while FITC-dextran 40 kDa failed to enter the organoid lumen and revealed that the genetic properties of bovine intestinal organoids were highly similar to those of in vivo. Collectively, these results provide a reliable method for efficient isolation of intestinal crypts from the small intestine and robust 3D expansion of intestinal organoids in adult bovine and demonstrate the in vitro 3D organoids mimics the in vivo tissue topology and functionality. Finally, intestinal organoids are potential alternatives to in vivo systems and will be facilitated as the practical model to replace animal experiments for various purposes in the fields of animal biotechnology.


2021 ◽  
Author(s):  
Adedamola Olayanju ◽  
Aline F Miller ◽  
Tahera Ansari ◽  
Christopher E. Goldring

AbstractA major challenge in advancing preclinical studies is the lack of robust in vitro culture systems that fully recapitulate the in vivo scenario together with limited clinical translational to humans. Organoids, as 3-dimensional (3D) self-replicating structures are increasingly being shown as powerful models for ex vivo experimentation in the field of regenerative medicine and drug discovery. Organoid formation requires the use of extracellular matrix (ECM) components to provide a 3D platform. However, the most commonly used ECM, essential for maintaining organoid growth is Matrigel and is derived from a tumorigenic source which limits its translational ability. PeptiGels® which are self-assembling peptide hydrogels present as alternatives to traditional ECM for use in 3D culture systems. Synthetic PeptiGels® are non-toxic, biocompatible, biodegradable and can be tuneable to simulate different tissue microenvironments. In this study, we validated the use of different types of PeptiGels® for porcine hepatic organoid growth. Hepatic organoids were assessed morphologically and using molecular techniques to determine the optimum PeptiGel® formulation. The outcome clearly demonstrated the ability of PeptiGel® to support organoid growth and offer themselves as a technological platform for 3D cultured physiologically and clinically relevant data.


2019 ◽  
Author(s):  
Laura W. Simpson ◽  
Gregory L. Szeto ◽  
Hacene Boukari ◽  
Theresa A. Good ◽  
Jennie B. Leach

AbstractThe properties of a hydrogel utilized in 3D culture can influence cell phenotype and morphology, yielding striking similarities to cellular processes that occur in vivo. Indeed, research areas including regenerative medicine, tissue engineering, cancer models, and stem cell cultures have readily utilized 3D biomaterials to investigate cell biological questions. However, cells are only one component of this milieu. Macromolecules play roles as bioactive factors and physical structures. Yet, investigations of macromolecular biophysics largely focus on pure molecules in dilute solution. Biophysical processes such as protein aggregation underlie diseases including Alzheimer’s disease, which is hallmarked by accumulated neurotoxic amyloid-β (Aβ) aggregates. Previously, we demonstrated that Aβ cytotoxicity is attenuated when cells are cultured within type I collagen hydrogels vs. on 2D substrates. Here, we investigated whether this phenomenon is conserved when Aβ is confined within hydrogels of varying physiochemical properties, notably mesh size and bioactivity. We investigated Aβ structure and aggregation kinetics in solution and in hydrogels (collagen, agarose, hyaluronic acid and polyethylene glycol) using fluorescence correlation spectroscopy and thioflavin T assays. Our results reveal that all hydrogels tested were associated with Aβ cytotoxicity attenuation. We suggest that confinement itself imparts a profound effect, possibly by stabilizing Aβ structures and shifting the aggregate equilibrium toward larger species. It is likely that the milieu that exist within cells and tissues also influences protein-protein interactions; thus, we suggest that it is critical to evaluate whether protein structure, function, and stability are altered in 3D systems vs. ideal solutions and 2D culture.


Author(s):  
Ana Ivonne Vazquez-Armendariz ◽  
Susanne Herold

Three-dimensional (3D) organoid culture systems have rapidly emerged as powerful tools to study organ development and disease. The lung is a complex and highly specialized organ that comprises more than 40 cell types that offer several region-specific roles. During organogenesis, the lung goes through sequential and morphologically distinctive stages to assume its mature form, both structurally and functionally. As branching takes place, multipotent epithelial progenitors at the distal tips of the growing/bifurcating epithelial tubes progressively become lineage-restricted, giving rise to more differentiated and specialized cell types. Although many cellular and molecular mechanisms leading to branching morphogenesis have been explored, deeper understanding of biological processes governing cell-fate decisions and lung patterning is still needed. Given that these distinct processes cannot be easily analyzedin vivo, 3D culture systems have become a valuable platform to study organogenesisin vitro. This minireview focuses on the current lung organoid systems that recapitulate developmental events occurring before and during branching morphogenesis. In addition, we also discuss their limitations and future directions.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Sign in / Sign up

Export Citation Format

Share Document