scholarly journals Lipid metabolism links nutrient-exercise timing to insulin sensitivity in men classified as overweight or obese

2019 ◽  
Author(s):  
R.M. Edinburgh ◽  
H.E Bradley ◽  
N-F. Abdullah ◽  
S.L. Robinson ◽  
O.J. Chrzanowski-Smith ◽  
...  

AbstractContextPre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. We hypothesised that in men with overweight/obesity, acute exercise before versus after nutrient ingestion would increase whole-body and intramuscular lipid utilization, translating into greater increases in oral glucose insulin sensitivity over 6-weeks of training.Design and ParticipantsWe showed in men with overweight/obesity (mean±SD for BMI: 30.2±3.5 kg×m-2 for acute, crossover study, 30.9±4.5 kg×m-2 for randomized, controlled, training study) a single exercise bout before versus after nutrient provision increased lipid utilisation at the whole-body level, but also in both type I (p<0.01) and type II muscle fibres (p=0.02). We then used a 6-week training intervention to show sustained, 2-fold increases in lipid utilisation with exercise before versus after nutrient provision (p<0.01).Main Outcome MeasuresPostprandial glycemia was not differentially affected by exercise training before vs after nutrient provision (p>0.05), yet plasma was reduced with exercise training before, but not after nutrient provision (p=0.03), resulting in increased oral glucose insulin sensitivity when training was performed before versus after nutrient provision (25±38 vs −21±32 mL×min-1×m-2; p=0.01) and this was associated with increased lipid utilisation during exercise (r=0.50, p=0.02). Regular exercise prior to nutrient provision augmented remodelling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (p<0.05).ConclusionsExperiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (i.e., in the fasted state) may exert beneficial effects on lipid utilisation and reduce postprandial insulinemia.PrécisExercise in the fasted-versus fed-state increased intramuscular and whole-body lipid use, translating into increased muscle adaptation and insulin sensitivity when regularly performed over 6 weeks.

2019 ◽  
Vol 105 (3) ◽  
pp. 660-676 ◽  
Author(s):  
Robert M Edinburgh ◽  
Helen E Bradley ◽  
Nurul-Fadhilah Abdullah ◽  
Scott L Robinson ◽  
Oliver J Chrzanowski-Smith ◽  
...  

Abstract Context Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. Objective To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism. Design (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study). Setting General community. Participants Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study). Interventions Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion. Results Acute Study—exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: –3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P &lt; 0.01) and type II fibers (–1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P &lt; 0.05). Training Study—postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P &gt; 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs –21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P &lt; 0.05). Conclusions Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.


1991 ◽  
Vol 261 (4) ◽  
pp. E437-E443 ◽  
Author(s):  
J. A. Houmard ◽  
P. C. Egan ◽  
P. D. Neufer ◽  
J. E. Friedman ◽  
W. S. Wheeler ◽  
...  

Exercise training has been proposed to improve whole body insulin sensitivity through a postreceptor adaptation in skeletal muscle. This study examined if levels of the insulin-responsive muscle glucose transporter protein (GLUT-4) were associated with improved insulin sensitivity in trained vs. sedentary middle-aged individuals. Muscle GLUT-4 levels and oral glucose tolerance test (OGTT) responses were obtained in age-matched trained and sedentary men (n = 11). Plasma insulin levels during the OGTT were significantly lower (P less than 0.01) in the trained men, whereas no differences were seen in plasma glucose responses. GLUT-4 protein content was approximately twofold higher in the trained men (2.41 +/- 0.17 vs. 1.36 +/- 0.11 micrograms standard, P less than 0.001). OGTT responses and GLUT-4 levels were not altered 15-18 h after a standard exercise bout in six representative sedentary subjects. These data suggest that GLUT-4 levels are increased in conjunction with insulin sensitivity in chronically exercise-trained middle-aged men. This finding suggests a possible mechanism for the improved insulin sensitivity observed with exercise training in humans.


Author(s):  
Drusus A Johnson-Bonson ◽  
Benjamin J Narang ◽  
Russell G Davies ◽  
Aaron Hengist ◽  
Harry A Smith ◽  
...  

This study investigated whether carbohydrate-energy replacement immediately after prolonged endurance exercise attenuates insulin sensitivity the following morning, and whether exercise improves insulin sensitivity the following morning independent of an exercise-induced carbohydrate deficit. Oral glucose tolerance and whole-body insulin sensitivity were compared the morning after three evening conditions, involving: (1) treadmill exercise followed by carbohydrate replacement drink (200 or 150 g maltodextrin for males and females, respectively; CHO-replace); (2) treadmill exercise followed by a non-caloric, taste-matched placebo (CHO-deficit); or (3) seated rest with no drink provided (Rest). Treadmill exercise involved 90 minutes at ~80% age-predicted maximum heart rate. Seven males and two females (aged 23 ± 1 years; body mass index 24.0 ± 2.7 kg·m-2) completed all conditions in a randomized order. Matsuda index improved by 22% (2.2 [0.3, 4.0] au, p = .03) and HOMA2-IR improved by 10% (-0.04 [-0.08, 0.00] au, p = .04) in CHO-deficit versus CHO-replace, without corresponding changes in postprandial glycemia. Outcomes were similar between Rest and other conditions. These data suggest that improvements to insulin sensitivity in healthy populations following acute moderate/vigorous intensity endurance exercise may be dependent on the presence of a carbohydrate-energy deficit. NOVELTY • Restoration of carbohydrate balance following acute endurance exercise attenuated whole-body insulin sensitivity • Exercise per se failed to enhance whole-body insulin sensitivity • Maximizing or prolonging the post-exercise carbohydrate deficit may enhance acute benefits to insulin sensitivity


1986 ◽  
Vol 250 (5) ◽  
pp. E570-E575
Author(s):  
G. K. Grimditch ◽  
R. J. Barnard ◽  
S. A. Kaplan ◽  
E. Sternlicht

We examined the hypothesis that the exercise training-induced increase in skeletal muscle insulin sensitivity is mediated by adaptations in insulin binding to sarcolemmal (SL) insulin receptors. Insulin binding studies were performed on rat skeletal muscle SL isolated from control and trained rats. No significant differences were noted between groups in body weight or fat. An intravenous glucose tolerance test showed an increase in whole-body insulin sensitivity with training, and specific D-glucose transport studies on isolated SL vesicles indicated that this was due in part to adaptations in skeletal muscle. Enzyme marker analyses revealed no differences in yield, purity, or contamination of SL membranes between the two groups. Scatchard analyses indicated no significant differences in the number of insulin binding sites per milligram SL protein on the high-affinity (15.0 +/- 4.1 vs. 18.1 +/- 6.4 X 10(9)) or on the low-affinity portions (925 +/- 80 vs. 884 +/- 106 X 10(9)) of the curves. The association constants of the high-affinity (0.764 +/- 0.154 vs. 0.685 +/- 0.264 X 10(9) M-1) and of the low affinity sites (0.0096 +/- 0.0012 vs. 0.0102 +/- 0.0012 X 10(9) M-1) also were similar. These results do not support the hypothesis that the increased sensitivity to insulin after exercise training is due to changes in SL insulin receptor binding.


2010 ◽  
Vol 298 (5) ◽  
pp. E920-E929 ◽  
Author(s):  
Esben S. Buhl ◽  
Thomas Korgaard Jensen ◽  
Niels Jessen ◽  
Betina Elfving ◽  
Christian S. Buhl ◽  
...  

Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4–5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phospho enolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser473phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW ( P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion ( P < 0.05 vs. Cx), whole body insulin resistance ( P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression ( P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser473phosphorylation. The ESC treatment normalized corticosterone secretion ( P < 0.05 vs. LBW), whole body insulin sensitivity ( P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression ( P < 0.05), and red muscle PKB Ser473phosphorylation ( P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.


1994 ◽  
Vol 77 (2) ◽  
pp. 534-541 ◽  
Author(s):  
J. Gao ◽  
W. M. Sherman ◽  
S. A. McCune ◽  
K. Osei

This study utilized the obese male spontaneously hypertensive heart failure rat (SHHF/Mcc-facp), which has metabolic features very similar to human non-insulin-dependent diabetes mellitus. The purpose of this study was to assess the insulin sensitivity and responsiveness of whole body glucose disposal and insulin suppressability of hepatic glucose production with use of the euglycemic-hyperinsulinemic clamp procedure in 12- to 15-wk-old SHHF/Mcc-facp rats at rest (OS) and 2.5 h after a single session of acute exercise (OE). Lean male SHHF/Mcc-facp rats were sedentary (LS) control animals. At least three clamps producing different insulin-stimulated responses were performed on each animal in a randomized order. At this age the obese animals are normotensive and have not developed congestive heart failure. Compared with LS, OS were significantly hyperglycemic and hyperinsulinemic and insulin sensitivity and responsiveness of whole body glucose uptake and insulin suppressability of hepatic glucose production were significantly decreased. Compared with LS and OS, acute exercise significantly decreased resting plasma glucose but did not alter plasma insulin. Compared with OS, acute exercise significantly increased the insulin responsiveness of whole body glucose disposal but did not affect the sensitivity of whole body glucose disposal or insulin suppressability of hepatic glucose production. Compared with LS, however, acute exercise did not “normalize” the insulin responsiveness of whole body glucose disposal. Thus a single acute exercise session improves but does not normalize whole body insulin resistance in the SHHF/Mcc-facp rat.


Author(s):  
Malgorzata Malczewska-Malec ◽  
Iwona Wybranska ◽  
Iwona Leszczynska-Golabek ◽  
Lukasz Partyka ◽  
Jadwiga Hartwich ◽  
...  

AbstractThis study analyzes the relationship between risk factors related to overweight/obesity, insulin resistance, lipid tolerance, hypertension, endothelial function and genetic polymorphisms associated with: i) appetite regulation (leptin, melanocortin-3-receptor (MCR-3), dopamine receptor 2 (D2R)); ii) adipocyte differentiation and insulin sensitivity (peroxisome proliferator-activated receptor-γThe 122 members of 40 obese Caucasian families from southern Poland participated in the study. The genotypes were analyzed by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) or by direct sequencing. Phenotypes related to obesity (body mass index (BMI), fat/lean body mass composition, waist-to-hip ratio (WHR)), fasting lipids, glucose, leptin and insulin, as well as insulin during oral glucose tolerance test (OGTT) (4 points within 2 hours) and during oral lipid tolerance test (OLTT) (5 points within 8 hours) were assessed. The insulin sensitivity indexes: homeostasis model assessment of insulin resistance, whole body insulin sensitivity index, hepatic insulin sensitivity and early secretory response to an oral glucose load (HOMA-IR, ISI-COMP, ISI-HOMA and DELTA) were calculated.The single gene mutations such as CWe conclude that the polymorphisms we investigated were weakly correlated with obesity but significantly modified the risk factors of the metabolic syndrome.


2009 ◽  
Vol 297 (1) ◽  
pp. E92-E103 ◽  
Author(s):  
Lotte Leick ◽  
Ylva Hellsten ◽  
Joachim Fentz ◽  
Stine S. Lyngby ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

The aim of the present study was to test the hypothesis that PGC-1α is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1α-dependent mechanism. Whole body PGC-1α knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1α KO mice, VEGF protein expression was ∼60–80% lower and the capillary-to-fiber ratio ∼20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1α KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression ∼50% in WT mice but with no effect in PGC-1α KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1α KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression ∼15% in WT but not in PGC-1α KO mice. This study shows that PGC-1α is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1α.


2013 ◽  
Vol 38 (4) ◽  
pp. 427-430 ◽  
Author(s):  
Steven K. Malin ◽  
Barry Braun

Metformin attenuates the higher insulin sensitivity that occurs with exercise training. Sixteen people with prediabetes trained for 10 weeks while taking metformin (n = 8) or placebo (n = 8). Substrate utilization was assessed using glucose kinetics and indirect calorimetry. After training, exercise whole-body fat oxidation was higher and glycogen use lower (p < 0.05), with no differences between groups. Blood glucose use was unchanged. Training-induced enhancement of insulin sensitivity (clamp) correlated with higher peak oxygen uptake (r = 0.70; p < 0.05), but was independent of glucose kinetic and substrate metabolism.


Sign in / Sign up

Export Citation Format

Share Document