scholarly journals Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni

2019 ◽  
Author(s):  
Vitor Coutinho Carneiro ◽  
Isabel Caetano de Abreu da Silva ◽  
Murilo Sena Amaral ◽  
Adriana S.A. Pereira ◽  
Gilbert O. Silveira ◽  
...  

AbstractTreatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ), and due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935. We synthesized a novel and potent LSD1 inhibitor, MC3935, which was used to treat schistosomula or adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.Author SummarySchistosomiasis mansoni is a chronic and debilitating tropical disease caused by the helminth Schistosoma mansoni. The control and treatment of the disease rely almost exclusively on praziquantel (PZQ). Thus, there is an urgent need to search for promising protein targets to develop new drugs. Drugs that inhibit enzymes that modify the chromatin structure have been developed for a number of diseases. We and others have shown that S. mansoni epigenetic enzymes are also potential therapeutic targets. Here we evaluated the potential of the S. mansoni histone demethylase LSD1 (SmLSD1) as a drug target. We reported the synthesis of a novel and potent LSD1 inhibitor, MC3935, and show that it selectively inhibited the enzymatic activity of SmLSD1. Treatment of juvenile or adult worms with MC3935 caused severe damage to the tegument of the parasites and compromised egg production. Importantly, MC3935 proved to be highly toxic to S. mansoni, culminating in the death of juvenile or adult worms within 96 h. Transcriptomic analysis of MC3935-treated parasites revealed changes in the gene expression of hundreds of genes involved in key biological processes. Importantly, SmLSD1 contains unique sequences within its polypeptide chain that could be explored to develop a S. mansoni selective drug.

2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Constance Schmelzer ◽  
Mitsuaki Kitano ◽  
Gerald Rimbach ◽  
Petra Niklowitz ◽  
Thomas Menke ◽  
...  

MicroRNAs (miRs) are involved in key biological processes via suppression of gene expression at posttranscriptional levels. According to their superior functions, subtle modulation of miR expression by certain compounds or nutrients is desirable under particular conditions. Bacterial lipopolysaccharide (LPS) induces a reactive oxygen species-/NF-κB-dependent pathway which increases the expression of the anti-inflammatory miR-146a. We hypothesized that this induction could be modulated by the antioxidant ubiquinol-10. Preincubation of human monocytic THP-1 cells with ubiquinol-10 reduced the LPS-induced expression level of miR-146a to 78.9±13.22%. In liver samples of mice injected with LPS, supplementation with ubiquinol-10 leads to a reduction of LPS-induced miR-146a expression to 78.12±21.25%. From these consistent in vitro and in vivo data, we conclude that ubiquinol-10 may fine-tune the inflammatory response via moderate reduction of miR-146a expression.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3194 ◽  
Author(s):  
Guan-Jun Yang ◽  
Pui-Man Lei ◽  
Suk-Yu Wong ◽  
Dik-Lung Ma ◽  
Chung-Hang Leung

Lysine-specific demethylase 1A (LSD1, also named KDM1A) is a demethylase that can remove methyl groups from histones H3K4me1/2 and H3K9me1/2. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, and is associated with inferior prognosis. Pharmacological inhibition of LSD1 has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of LSD1, its role in carcinogenesis, a comparison of currently available approaches for screening LSD1 inhibitors, a classification of LSD1 inhibitors, and its potential as a drug target in cancer therapy.


2019 ◽  
Author(s):  
Kezia C. L. Whatley ◽  
Gilda Padalino ◽  
Helen Whiteland ◽  
Kathrin K. Geyer ◽  
Benjamin J. Hulme ◽  
...  

AbstractBackgroundPraziquantel represents the frontline chemotherapy used to treat schistosomiasis, a neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schistosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the human host often requires repeat treatments. This limitation, amongst others, has led to the search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/inhibitors obtained from the Structural Genomics Consortium.Methodology/Principle findingsThirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers were initially screened against Schistosoma mansoni schistosomula using the high-throughput Roboworm platform. At 10 µM, 14 of these 37 compounds (38%) negatively affected schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subsequent dose-response titrations against schistosomula and adult worms revealed epigenetic probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyltransferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epigenetic process (protein methylation) known to be critical for schistosome development, further characterisation of these compounds/putative targets was performed. RNA interference (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult worms replicated the compound-mediated motility and egg production defects. Furthermore, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms. Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by the related structural analogue GSK-J1 (non-permeable inhibitor).Conclusion/SignificanceCollectively, these results provide further support for the development of next-generation drugs targeting schistosome epigenetic pathway components. In particular, the progression of histone methylation/demethylation modulators presents a tractable strategy for anti-schistosomal control.Author SummaryHuman schistosomiasis is caused by infection with parasitic blood fluke worms. Global control of this NTD is currently facilitated by administration of a single drug, praziquantel (PZQ). This mono-chemotherapeutic strategy of schistosomiasis control presents challenges as PZQ is not active against all human-dwelling schistosome lifecycle stages and the evolution of PZQ resistant parasites remains a theat. Therefore, new drugs to be used in combination with or in replacement of PZQ are urgently needed. Here, continuing our studies on Schistosoma mansoni epigenetic processes, we performed anthelmintic screening of 37 epigenetic probes/epigenetic inhibitors obtained from the Structural Genomics Consortium (SGC). The results of these studies highlighted that schistosome methylation/demethylation processes are acutely vulnerable. In particular, compounds affecting schistosome SMYD (LLY-507, BAY-598) or JMJD (GSK-J4) homologues are especially active on schistosomula and adult worms during in vitro phenotypic drug screens. The active epigenetic probes identified here as well as their corresponding S. mansoni protein targets offers new starting points for the development of next-generation anti-schistosomals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanjing He ◽  
Yin Cai ◽  
Pearl Mingchu Pai ◽  
Xinling Ren ◽  
Zhengyuan Xia

microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009554
Author(s):  
Ho Yin Pekkle Lam ◽  
Ting-Ruei Liang ◽  
Shih-Yi Peng

Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13543-e13543 ◽  
Author(s):  
Tamara Maes ◽  
Iñigo Tirapu ◽  
Cristina Mascaró ◽  
Alberto Ortega ◽  
Angels Estiarte ◽  
...  

e13543 Background: The lysine-specific demethylase KDM1A catalyzes the removal of methyl groups from mono and dimethylated H3K4/K9, changes that have inductive or inhibitory effects on gene expression. KDM1A is a key regulator of leukemia stem cell (LSC) potential and is required for MLL-AF9 oncogenic transformation. Inhibition of KDM1A expression or activity overcomes the differentiation block in AML. Mixed lineage leukemia (MLL) is a form of AML that is especially sensitive to inhibition of KDM1A. Methods: Gene expression was analyzed using microarrays, cell differentiation was assessed by FACS, viability and apoptosis were assessed by MTT assay and PI staining, me2H3K4 levels were quantified by qPCR and ChIPseq. Results: We used computational models based on reported X-ray structures fine-tuned with the SAR of a first series of molecules to design and synthesize >800 KDM1A inhibitors. ORY-1001 is an enantiomerically pure KDM1A inhibitor (IC50 <20nM) with high selectivity against related FAD dependent aminoxidases (MAO-A/B, IL4I1, KDM1B >100uM, SMOX 7uM). ORY-1001 does not inhibit non-related histone modifiers, and is clean in a CEREP diversity panel. Treatment of THP-1 (MLL-AF9) cells with ORY-1001, results in a time/dose dependent me2H3K4 accumulation at KDM1A target genes and concomitant induction of differentiation markers (EC50 me2H3K4 and FACS CD11b <1nM). Microarray analysis of treated THP-1 cells reveals differentiation towards a monocyte-like phenotype. ORY-1001 induces apoptosis in THP-1 and inhibits proliferation and colony formation of MV(4;11) (MLL-AF4) cells (EC50 <1nM). Daily oral administration of doses <0.020mg/kg leads to significantly reduced tumor growth in rodent MV(4;11) xenografts. In vivo and in vitro IND/IMPD enabling studies have shown that ORY-1001 presents excellent oral bioavailability, target exposure and activity in vivo. The compound is stable in hepatocytes (Clint<0.6 mL/min/g liver, @1uM) and does not exhibit CYP (IC50>100uM) or hERG (%inhib.<2%, @10uM) inhibition. No off-target activity has been detected in 28d rat toxicology studies. Conclusions: A potent and selective KDM1A inhibitor is described with in vitro and vivo anti-leukemic efficacy.


Parasitology ◽  
1977 ◽  
Vol 75 (1) ◽  
pp. 101-109 ◽  
Author(s):  
J. R. Shaw ◽  
D. A. Erasmus

A simple technique for the maintenance in vitro of mature Schistosoma mansoni is described and critically assessed at the ultrastructural level. Females were cultured for 4–6 days with no apparent ultrastructural change, but after this period changes appeared in the cells of the ovary and vitelline gland. At a later stage (10–12 days) lipid bodies appeared in the parenchyma cells. These changes occurred in worms which were active, paired with males and were egg–laying. Thus the activity, pairing behaviour and egg–laying characteristics are not adequate to reveal the true morphological condition and presumably the physiological and biochemical status of cultured worms.This technique was used to study the effect of Astiban on females and the results were compared with worms treated in vivo. Astiban concentrations greater than 30 µg/ml killed worms within 7–20 h and acted non–selectively. Astiban at low concentrations (10µg/ml) during short–term culture (1–3 h) resulted in a selective action of the drug on maturing vitelline cells. Thus, although the degree of cell damage caused by drug treatment was more severe and occurred earlier than the effects observed in worms cultured in vitro without drugs, both treatments resulted in differential cell death.


Author(s):  
Stefan L. Debbert ◽  
Mikaela J. Hintz ◽  
Christian J. Bell ◽  
Kenya R. Earl ◽  
Grant E. Forsythe ◽  
...  

The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in millions of people a year shows the need to further develop a pipeline of new drugs to treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against Schistosoma mansoni. In this study, 47 synthesized compounds containing quinoxaline moieties were first assayed against the larval stage of this parasite, newly transformed schistosomula (NTS); of these, 16 killed over 70% NTS at 10 μM. Further testing against NTS and adult S. mansoni yielded three compounds with 50% inhibitory concentrations (IC50s) of ≤ 0.31 μM against adult S. mansoni and selectivity indices of ≥ 8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body weight to S. mansoni-infected mice yielded only moderate worm burden reduction (WBR) (9.3% – 46.3%). The discrepancy between these compounds’ good in vitro activities and their poor in vivo activities indicates that optimization of their pharmacokinetic properties may yield compounds with greater bioavailabilities and better antischistosomiasis activities in vivo.


2022 ◽  
Author(s):  
Juliane Grimm ◽  
Raj Bhayadia ◽  
Lucie Gack ◽  
Dirk Heckl ◽  
Jan-Henning Klusmann

Children with Down syndrome (DS) are predisposed to developing megakaryoblastic leukemia (ML-DS) and often experience severe toxicities from chemotherapy, highlighting the need for targeted therapies with beneficial risk profiles. The genomic landscape of ML-DS is characterized by a combination of mutations in signaling pathway genes and epigenetic modifiers, while aberrant lysine specific demethylase 1 (LSD1) and JAK-STAT activation have both been implicated in leukemogenesis. Here, we demonstrate that combined LSD1 and JAK1/2 inhibition exerts synergistic anti-leukemic effects specifically in ML-DS, both in vitro and in patient derived xenografts in vivo. The JAK1/2 inhibitor ruxolitinib enhanced the LSD1 inhibitor-induced differentiation, proliferation arrest and apoptosis in patient-derived leukemic blasts. At the transcriptional level, the combination synergistically repressed gene expression signatures essential for cell division. We further observed an immunogenic gene expression pattern in the form of increased cytokine signaling, which - by sensitizing ML-DS blasts to the JAK-STAT signaling blockade induced by ruxolitinib - could explain the increased susceptibility of ML-DS blasts to combination therapy. Taken together, we establish combined LSD1 and JAK-STAT inhibition as an efficacious therapeutic regimen specifically designed to target important steps in ML-DS leukemogenesis, paving the way for targeted therapies in this entity.


Sign in / Sign up

Export Citation Format

Share Document