scholarly journals Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core

2022 ◽  
Author(s):  
Juliane Grimm ◽  
Raj Bhayadia ◽  
Lucie Gack ◽  
Dirk Heckl ◽  
Jan-Henning Klusmann

Children with Down syndrome (DS) are predisposed to developing megakaryoblastic leukemia (ML-DS) and often experience severe toxicities from chemotherapy, highlighting the need for targeted therapies with beneficial risk profiles. The genomic landscape of ML-DS is characterized by a combination of mutations in signaling pathway genes and epigenetic modifiers, while aberrant lysine specific demethylase 1 (LSD1) and JAK-STAT activation have both been implicated in leukemogenesis. Here, we demonstrate that combined LSD1 and JAK1/2 inhibition exerts synergistic anti-leukemic effects specifically in ML-DS, both in vitro and in patient derived xenografts in vivo. The JAK1/2 inhibitor ruxolitinib enhanced the LSD1 inhibitor-induced differentiation, proliferation arrest and apoptosis in patient-derived leukemic blasts. At the transcriptional level, the combination synergistically repressed gene expression signatures essential for cell division. We further observed an immunogenic gene expression pattern in the form of increased cytokine signaling, which - by sensitizing ML-DS blasts to the JAK-STAT signaling blockade induced by ruxolitinib - could explain the increased susceptibility of ML-DS blasts to combination therapy. Taken together, we establish combined LSD1 and JAK-STAT inhibition as an efficacious therapeutic regimen specifically designed to target important steps in ML-DS leukemogenesis, paving the way for targeted therapies in this entity.

2017 ◽  
Vol 29 (1) ◽  
pp. 184
Author(s):  
S. Canovas ◽  
E. Ivanova ◽  
S. Garcia-Martinez ◽  
R. Romar ◽  
N. Fonseca-Balvis ◽  
...  

Studies in mouse and human have shown extensive DNA methylation reprogramming in pre-implantation development followed by remethylation from implantation. However, the extent to which such reprogramming is conserved in mammals and the timing of demethylation and remethylation are unknown. As part of a major objective to characterise methylation dynamics in the bovine and porcine species from the oocyte to the blastocyst stage, we aimed here to compare the distribution of methylation at single-base resolution in both species at Day 7.5 of development. The DNA methylation profiles were obtained from individual blastocysts at Day 7.5 [pig: 3 in vivo, 3 in vitro; cow: 3 in vivo, 3 in vitro, 3 inner cell mass (ICM) and 3 trophoectoderm (TE) dissected from in vitro blastocysts] using the post-bisulphite adaptor tagging method and Illumina sequencing. For oocytes, data (GEO: GSE63330) from Schroeder et al. 2015 were analysed. Raw sequences were mapped, methylation calls made using Bismark and data analysis and visualisation was done within the SeqMonk platform. Gene expression profiles from individual blastocysts (3 pig, 3 cow) were obtained by RNA-seq. Annotated mRNA features were quantitated in SeqMonk and these were fed into DESeq2 for differential expression analysis (P < 0.05) as previously reported (Love et al. 2014 Genome Biol. 15, 550). Global methylation levels in whole blastocysts differed substantially between porcine and bovine embryos (in vivo: 12.33 ± 3.6 v. 28.33 ± 3.5%; in vitro: 15.02 ± 3.3 v. 24.41 ± 4.1%). In addition, the distribution of methylation differed: the pattern of cytosine methylated seemed random in the porcine genome, but was highly structured in the bovine genome, with methylation predominantly over gene bodies, resembling the profile previously reported in oocytes (Schroeder et al. 2015 PLoS Genet. 11, e1005442). Regarding correlation analysis, gene expression versus methylation were plotted. It suggested that gene body methylation reflected gene expression pattern in oocytes as well as in bovine blastocysts. Pair-wise comparison of isolated ICM and TE was filtered to require 5% change, and replicate set statistics were applied. This revealed very similar total and regional methylation levels in the 2 compartments, indicating that remethylation does not initiate preferentially in one compartment in bovine pre-implantation embryos. This confirms, from a viewpoint of the genome-wide DNA methylation, what has been observed in mouse for specific genes: the trophoblast-specific DNA methylation occurs after the segregation of the TE and ICM (Nakanishi et al. 2012 Epigenetics 7, 173–183). Our study is the first to provide whole genome methylation profiles from single blastocysts of economically important livestock species. Our data demonstrate that methylation reprogramming in early pre-implantation development is species specific. Knowledge of these specific patterns may have high importance when decisions are taken regarding the use of assisted reproductive technologies, cloning, or generation of transgenic animals. This work was funded by AGL2015–66341-R (MINECO-FEDER), PRX14/00348 (MECD), 19595/EE/14 (F. Séneca).


2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 754
Author(s):  
Sara La Manna ◽  
Laura Lopez-Sanz ◽  
Susana Bernal ◽  
Luna Jimenez-Castilla ◽  
Ignacio Prieto ◽  
...  

The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•− production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.


2014 ◽  
Vol 26 (1) ◽  
pp. 161
Author(s):  
A. Velasquez ◽  
D. Veraguas ◽  
F. O. Castro ◽  
J. F. Cox ◽  
L. l. Rodriguez-Alvarez

It is known that embryos produced in vitro are less competent than their in vivo-derived counterparts. When embryos are produced or manipulated in vitro, their developmental potential decreases significantly, which impinges upon the production of viable offspring. In bovines, embryos that will be transferred to a surrogate mother are selected at the blastocysts stage using noninvasive methods, such as their morphological features. However, many of those embryos are not able to implant or to maintain a normal pregnancy because embryo morphology does not reflect its developmental potential and a correct gene expression pattern that support a normal development. It seems that the ideal method for embryo selection would be based on the screening of gene markers that correlate with successful pregnancy after embryo transfer. In that sense, we have proposed an approach to characterise gene expression pattern of early (Day 7) bovine blastocysts and to correlate this gene expression with further developmental potential in vivo, i.e. upon elongation until Day 17. For that, it was established an efficient method to produce identical and viable hemi-embryos by splitting IVF bovine blastocysts in order to set the expression profile of certain genes in one hemi-embryo at blastocyst stage, while the counterpart embryo elongates in vivo for 10 days. A total of 129 blastocysts were split. Six groups of blastocysts were used for splitting and the results compared: 1) Day-7 early blastocysts (n = 20); 2) Day-7 expanded blastocysts (n = 25); 3) Day-7 hatched blastocysts (n = 17); 4) Day-8 early blastocysts (n = 10); 5) Day-8 expanded blastocysts (n = 12); and 6) Day-8 hatched blastocysts (n = 45). Hemi-embryos derived from day-8 grade I and well expanded blastocysts had the greatest survival rate, in vitro re-expansion (67.7%; P < 0.05) and both hemi-embryos conserved a normal morphology with a total cell number over 80 after 6 h in culture. Also both hemi-embryos at blastocyst stage showed homogeneous expression pattern of the genes OCT4, SOX2, NANOG, CDX2, ACTB, and GAPDH (P < 0.05). Finally, the in vivo survival of hemi-embryos was assessed and compared with nonsplit embryos (control) by transferring to recipient cow and collecting at Day 17 of development. For this, hemi-embryos derived from Day-8 hatched blastocyst were used. From 14 transferred hemi-embryos, 5 (35.7%) were collected, and 9 elongated from 17 controls were recovered (52.9%). Also the elongation rate was significantly lower in hemi-embryos than in control; the length of hemi-embryos had a range between 1 and 5 cm, whereas 60% of the control embryos were longer than 10 cm. Our results provide an initial approach to study the correlation among the gene expression characteristics of early bovine embryos with their further development. However, it seems that embryo splitting hampers their elongation in vivo. It might be possible that the development of split embryos is retarded because of manipulation. This work was partially supported by Fondecyt grant no. 11100082 from the Ministry of Education of Chile.


2018 ◽  
Author(s):  
Faycal Guedj ◽  
Jeroen LA Pennings ◽  
Ashley E Siegel ◽  
Fatimah Alsebaa ◽  
Lauren J Massingham ◽  
...  

ABSTRACTHuman fetuses with trisomy 21 (T21) have atypical brain development that is apparent sonographically in the second trimester. Prenatal diagnosis provides a potential opportunity to begin treatment in utero. We hypothesize that by analyzing and integrating dysregulated gene expression and pathways common to humans with DS and mouse models we can discover novel targets for therapy. Here, we tested the safety and efficacy of apigenin (4’, 5, 7-trihydroxyflavone), identified using this approach, in both human amniocytes from fetuses with T21 and in the Ts1Cje mouse model. The experiments compared treated to untreated results in T21 and euploid cells, as well as in Ts1Cje mice and their wild-type littermate controls. T21 cells cultured with apigenin (2µM) had significantly reduced oxidative stress and improved antioxidant defense response in vitro. Apigenin (333-400 mg/kg/day), mixed with chow, was initiated prenatally to the dams and fed to the pups over their lifetimes. There was no significant increase in birth defects or pup deaths resulting from prenatal apigenin treatment. Apigenin significantly improved several developmental milestones and spatial olfactory memory in Ts1Cje neonates. In addition, we noted sex-specific effects on exploratory behavior and long-term hippocampal memory in adult mice, with males showing significantly more improvement than females. Global gene expression analyses demonstrated that apigenin targets similar signaling pathways through common upstream regulators both in vitro and in vivo. These studies provide proof-of-principle that apigenin has therapeutic effects in preclinical models of Down syndrome.ONE SENTENCE SUMMARYAs a candidate prenatal treatment for Down syndrome, apigenin improved oxidative stress/antioxidant capacity imbalance and reduced pathways associated with inflammation in human cells while improving aspects of behavior in the Ts1Cje mouse model.


2011 ◽  
Vol 23 (1) ◽  
pp. 134
Author(s):  
C. H. Park ◽  
S. G. Lee ◽  
H. J. Lee ◽  
T. K. Jung ◽  
Y. H. Jeong ◽  
...  

It was recently shown that treatment of cloned embryos with histone deacetylase inhibitors improves efficiency for the success rate of developmental potential to term in several species. The objective of the present study was to investigate the influence of the histone deacetylase inhibitor Scriptaid (Sc) on in vitro development in early porcine SCNT embryos and on their gene expression pattern. Based on the findings of previous porcine studies (Zhao et al. 2009), the reconstructed oocytes were treated with 500 nM Scriptaid for 14 to 16 h after post-fusion activation (6-DMAP/demecolcine). In our preliminary study, blastocyst rate significantly increased in the Sc-treated group, compared with the control group (25.1 ± 2.8% and 13.8 ± 1.9%, respectively, P < 0.05). We determined gene expression using quantitative real-time RT-PCR. The results showed that OCT3/4 gene was expressed at a similar level in in vivo and SCNT blastocysts with/without Sc. IGF2 and H19 genes tended to be highly expressed in both SCNT blastocysts with (1.6-fold and 3.1-fold, respectively) and without (2.0-fold and 5.8-fold, respectively) Sc than that of the in vivo blastocysts. We found differences in imprinted gene expression patterns between in vivo and cloned blastocysts. Expression of H19 and IGF2 in SCNT blastocysts after Scriptaid treatment decreased towards the expression levels of in vivo blastocysts. These results indicated that Scriptaid treatment in SCNT embryos may also have beneficial effects on in vitro developmental competence as well as their gene expression pattern.


1994 ◽  
Vol 302 (2) ◽  
pp. 331-333 ◽  
Author(s):  
S Reitamo ◽  
A Remitz ◽  
K Tamai ◽  
I Ledo ◽  
J Uitto

In immune cells, such as T cells and monocytes, interleukin 10 (IL-10) has regulatory functions on a number of cytokines, including IL-1, IL-2, IL-8 and tumour necrosis factor-alpha expression. However, the effects of IL-10 have not previously been studied in detail in connective-tissue cells. In the present study, we show that recombinant human IL-10 at physiological concentrations has direct effects on the expression of the human elastin gene both in vivo and in vitro. Transgenic mice expressing a human elastin promoter/chloramphenicol acetyltransferase (CAT) reporter gene construct were injected subcutaneously with IL-10 (1-100 ng) and the site of injection was biopsied after 24 h. CAT assay revealed an increase of up to 3.5-fold in the promoter activity with 10 ng of IL-10. Transforming growth factor-beta 2 (TGF-beta 2) is known to up-regulate elastin gene expression in cultured fibroblasts. When IL-10 was added to such cultures, the effects of TGF-beta 2 on elastin mRNA levels were synergistically potentiated. These results suggest that IL-10 has an up-regulatory effect on elastin gene expression.


Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Gnanaratnam Giritharan ◽  
Said Talbi ◽  
Annemarie Donjacour ◽  
Francesca Di Sebastiano ◽  
Anthony T Dobson ◽  
...  

In vitro culture (IVC) of preimplantation mouse embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared gene expression and development of mouse blastocysts produced by in vitro fertilization (IVF) versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC) versus control blastocysts flushed out of the uterus on post coital day 3.5. The global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. It appears that each method of fertilization has a unique pattern of gene expression and development. Embryos cultured in vitro had a reduction in the number of trophoblastic cells (IVF 33.5 cells, IVC 39.9 cells, and 49.6 cells in the in vivo group) and, to a lesser degree, of inner cell mass cells (12.8, 11.7, and 13.8 respectively). The inner cell mass nuclei were larger after culture in vitro (140 μm2, 113 μm2, and 86 μm2 respectively). Although a high number of genes (1912) was statistically different in the IVF cohort when compared with the in vivo control embryos, the magnitude of the changes in gene expression were low and only a minority of genes (29 genes) was changed more than fourfold. Surprisingly, IVF embryos were different from IVC embryos (3058 genes were statistically different, but only three changed more than fourfold). Proliferation, apoptosis, and morphogenetic pathways are the most common pathways altered after IVC. Overall, IVF and embryo culture have a profound effect on gene expression pattern and phenotype of mouse preimplantation embryos.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Alejandro González-Plaza ◽  
Inmaculada Parrilla ◽  
...  

Despite the reported promising farrowing rates after non-surgical and surgical transfers of vitrified porcine morulae and blastocysts produced in vivo (range: 70–75%), the pregnancy loss is 5–15 fold higher with vitrified than with fresh embryos. The present study aimed to investigate whether vitrification affects the transcriptome of porcine morulae, using microarrays and RT-qPCR validation. Morulae were obtained surgically from weaned sows (n = 13) on day 6 (day 0 = estrus onset). A total of 60 morulae were vitrified (treatment group). After 1 week of storage, the vitrified morulae were warmed. Vitrified-warmed and non-vitrified fresh morulae (control; n = 40) were cultured for 24 h to assess embryo survival by stereomicroscopy after. A total of 30 vitrified/warmed embryos that were deemed viable and 30 fresh control embryos (three pools of 10 for each experimental group) were selected for microarray analysis. Gene expression was assessed with a GeneChip® Porcine Genome Array (Affymetrix). An ANOVA analysis p-unadjusted &lt;0.05 and a fold change cut-off of ±1.5 were set to identify differentially expressed genes (DEGs). Data analysis and biological interpretation were performed using the Partek Genomic Suite 7.0 software. The survival rate of morulae after vitrification and warming (92.0 ± 8.3%) was similar to that of the control (100%). A total of 233 DEGs were identified in vitrified morulae (38 upregulated and 195 downregulated), compared to the control group. Nine pathways were significantly modified. Go-enrichment analysis revealed that DEGs were mainly related to the Biological Process functional group. Up-regulated DEGs were involved in glycosaminoglycan degradation, metabolic pathways and tryptophan metabolism KEGG pathways. The pathways related to the down-regulated DEGs were glycolysis/gluconeogenesis, protein export and fatty acid elongation. The disruption of metabolic pathways in morulae could be related to impaired embryo quality and developmental potential, despite the relatively high survival rates after warming observed in vitro. In conclusion, vitrification altered the gene expression pattern of porcine morulae produced in vivo, generating alterations in the transcriptome that may interfere with subsequent embryo development and pregnancy after embryo transfer.


Sign in / Sign up

Export Citation Format

Share Document