Schistosoma mansoni: differential cell death associated with in vitro culture and treatment with Astiban (Roche)

Parasitology ◽  
1977 ◽  
Vol 75 (1) ◽  
pp. 101-109 ◽  
Author(s):  
J. R. Shaw ◽  
D. A. Erasmus

A simple technique for the maintenance in vitro of mature Schistosoma mansoni is described and critically assessed at the ultrastructural level. Females were cultured for 4–6 days with no apparent ultrastructural change, but after this period changes appeared in the cells of the ovary and vitelline gland. At a later stage (10–12 days) lipid bodies appeared in the parenchyma cells. These changes occurred in worms which were active, paired with males and were egg–laying. Thus the activity, pairing behaviour and egg–laying characteristics are not adequate to reveal the true morphological condition and presumably the physiological and biochemical status of cultured worms.This technique was used to study the effect of Astiban on females and the results were compared with worms treated in vivo. Astiban concentrations greater than 30 µg/ml killed worms within 7–20 h and acted non–selectively. Astiban at low concentrations (10µg/ml) during short–term culture (1–3 h) resulted in a selective action of the drug on maturing vitelline cells. Thus, although the degree of cell damage caused by drug treatment was more severe and occurred earlier than the effects observed in worms cultured in vitro without drugs, both treatments resulted in differential cell death.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Juan Manuel Sacnun ◽  
Rebecca Herzog ◽  
Maria Bartosova ◽  
Claus Schmitt ◽  
Klaus Kratochwill

Abstract Background and Aims The composition of all currently available peritoneal dialysis (PD) fluids triggers morphological and functional changes in the peritoneal membrane. Periodic exposure leads to vasculopathy, hypervascularization, and diabetes-like damage of vessels, eventually leading to failure of the technique. Patients undergoing dialysis generally, have a high risk of cardiovascular events. It is currently unclear if there is a mechanistic link between peritoneal membrane failure and cardiovascular risk. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PDF reduce peritoneal damage. Here, we developed an experimental model for investigating effects of these cytoprotective additives in PDF in the cardiovascular context. Method For modelling the peritoneal membrane in vitro, mesothelial and endothelial cells were co-cultured in transwell plates. Mesothelial cells were grown in the upper compartment and primary human umbilical vein endothelial cells (HUVEc) or primary microvascular cells were grown in the lower compartment. PDF with or without cytoprotective compounds, was added to the upper compartment to only expose mesothelial cells directly to different dilutions of the fluid. Effects on cell damage was assessed by quantification of lactate-dehydrogenase (LDH) release and live-dead staining of cells. Proteome profiles were analysed for both cell-types separately and in combination using two-dimensional difference gel electrophoresis (2D-DiGE) and liquid chromatography coupled to mass spectrometry (LC-MS). In vitro findings were related to PD-induced arteriolar changes based on abundance profiles of micro-dissected omental arterioles of children treated with conventional PD-fluids and age-matched controls with normal renal function. Results Marked cellular injury of HUVEc after PD-fluid exposure was associated with a molecular landscape of the enriched biological process clusters ‘glucose catabolic process’, ‘cell redox homeostasis’, ‘RNA metabolic process’, ‘protein folding’, ‘regulation of cell death’, and ‘actin cytoskeleton reorganization’ that characterize PD-fluid cytotoxicity and counteracting cellular repair process respectively. PDF-induced cell damage was reduced by AlaGln and LiCl both in mesothelial and endothelial cells. Proteome analysis revealed perturbation of major cellular processes including regulation of cell death and cytoskeleton reorganization. Selected markers of angiogenesis, oxidative stress, cell junctions and transdifferentiation were counter-regulated by the additives. Co-cultured cells yielded differently regulated pathways following PDF exposure compared to separate culture. Comparison to human arterioles confirmed overlapping protein regulation between endothelial cells in vitro and in vivo, proving harmful effects of PD-fluids on endothelial cells leading to drastic changes of the cellular process landscape. Conclusion In summary, this study shows harmful effects of PD-fluids also effecting endothelial cells and elucidates potential mechanisms by which cytoprotective additives may counteract the signalling axis between local peritoneal damage and systemic vasculopathy. An in vitro co-culture system may be an attractive approach to simulate the peritoneal membrane for testing direct and indirect effects of cytoprotective additives in PDF. When cultured and stressed in close proximity cells may respond differently. Characterisation of PD-induced perturbations will allow identifying molecular mechanisms linking the peritoneal and cardiovascular context, offering therapeutic targets to reduce current limitations of PD and ultimately decreasing cardiovascular risk of dialysis patients.


2009 ◽  
Vol 13 (04n05) ◽  
pp. 544-551 ◽  
Author(s):  
Magdalena Cañete ◽  
Juan C. Stockert ◽  
Angeles Villanueva

Photodynamic therapy (PDT) is a subject of increasing biomedical research and represents a very promising therapeutic modality for palliative or even curative treatment of some superficial or endoscopically accessible tumors. In addition to the first photosensitizers (PSs) applied (hematoporphyrin-based drugs), second generation PSs with improved photophysical and photobiological properties are now studied using cell cultures, experimental tumors and clinical trials. On the other hand, there is a growing interest in the analysis of cell death mechanisms by apoptosis, which is especially relevant in oncology, because many anticancer drugs work, at least in part, by triggering apoptosis in neoplastic cells both in vitro and in vivo. The evaluation of cell death mechanisms is an important parameter to determine the efficacy and the potential toxicity of a treatment, allowing better adjustment of protocol. Using cell cultures, our research team has studied the mechanisms of cell damage and death implicated in the photodynamic processes, as well as the relationship between the cellular localization of the PS and the organelle damage during photosensitization. The results obtained in our laboratory provide a deeper understanding on the action mechanisms that lead to cell inactivation by PDT, and also allow selection of PSs with higher potential for clinical application than those currently in use.


2003 ◽  
Vol 23 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Anna Rytter ◽  
Tobias Cronberg ◽  
Fredrik Asztély ◽  
Sailasree Nemali ◽  
Tadeusz Wieloch

Oxygen and glucose deprivation (OGD) in cell cultures is generally studied in a medium, such as artificial cerebrospinal fluid (CSF), with an ion composition similar to that of the extracellular fluid of the normal brain (2 to 4 mmol/L K+, 2 to 3 mmol/L Ca2+; pH 7.4). Because the distribution of ions across cell membranes dramatically shifts during ischemia, the authors exposed mouse organotypic hippocampal tissue cultures to OGD in a medium, an ischemic cerebrospinal fluid, with an ion composition similar to the extracellular fluid of the brain during ischemia in vivo (70 mmol/L K+, 0.3 mmol/L Ca2+; pH 6.8). In ischemic CSF, OGD induced a selective and delayed cell death in the CA1 region, as assessed by propidium iodide uptake. Cell death was glutamate receptor dependent since blockade of the N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors mitigated cell damage. Hyperglycemia aggravates ischemic brain damage in vivo, whereas in vitro glucose in artificial CSF prevents oxygen deprivation-induced damage. The authors demonstrate that glucose in ischemic CSF significantly exacerbates cell damage after oxygen deprivation. This new model of in vitro “ischemia” can be useful in future studies of the mechanisms and treatment of ischemic cell death, including studies using genetically modified mice.


2009 ◽  
Vol 423 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Sara Maria Nancy Onnebo ◽  
Adolfo Saiardi

Inositol pyrophosphates are involved in a variety of cellular functions, but the specific pathways and/or downstream targets remain poorly characterized. In the present study we use Saccharomyces cerevisiae mutants to examine the potential roles of inositol pyrophosphates in responding to cell damage caused by ROS (reactive oxygen species). Yeast lacking kcs1 [the S. cerevisiae IP6K (inositol hexakisphosphate kinase)] have greatly reduced IP7 (diphosphoinositol pentakisphosphate) and IP8 (bisdiphosphoinositol tetrakisphosphate) levels, and display increased resistance to cell death caused by H2O2, consistent with a sustained activation of DNA repair mechanisms controlled by the Rad53 pathway. Other Rad53-controlled functions, such as actin polymerization, appear unaffected by inositol pyrophosphates. Yeast lacking vip1 [the S. cerevisiae PP-IP5K (also known as IP7K, IP7 kinase)] accumulate large amounts of the inositol pyrophosphate IP7, but have no detectable IP8, indicating that this enzyme represents the physiological IP7 kinase. Similar to kcs1Δ yeast, vip1Δ cells showed an increased resistance to cell death caused by H2O2, indicating that it is probably the double-pyrophosphorylated form of IP8 [(PP)2-IP4] which mediates the H2O2 response. However, these inositol pyrophosphates are not involved in directly sensing DNA damage, as kcs1Δ cells are more responsive to DNA damage caused by phleomycin. We observe in vivo a rapid decrease in cellular inositol pyrophosphate levels following exposure to H2O2, and an inhibitory effect of H2O2 on the enzymatic activity of Kcs1 in vitro. Furthermore, parallel cysteine mutagenesis studies performed on mammalian IP6K1 are suggestive that the ROS signal might be transduced by the direct modification of this evolutionarily conserved class of enzymes.


2015 ◽  
Vol 83 (4) ◽  
pp. 1418-1430 ◽  
Author(s):  
Catriona T. Prendergast ◽  
David E. Sanin ◽  
Peter C. Cook ◽  
Adrian P. Mountford

The effect that multiple percutaneous exposures toSchistosomalarvae has on the development of early CD4+lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) ofSchistosoma mansonicercariae, compared to a single dose (1×), results in CD4+T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+cell proliferation and cytokine production. FoxP3+CD4+regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+cell population from 4× mice was slight, as proliferation was only partly circumvented through thein vitroaddition of exogenous interleukin-2 (IL-2), and thein vivoblockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+T cell hyporesponsiveness after repeated parasite exposure involving CD4+cell apoptosis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2153
Author(s):  
Ming Yang ◽  
Kwok-Fai So ◽  
Wai-Ching Lam ◽  
Amy Cheuk Yin Lo

Retinitis pigmentosa (RP) is a leading cause of inherited retinal degeneration, with more than 60 gene mutations. Despite the genetic heterogenicity, photoreceptor cell damage remains the hallmark of RP pathology. As a result, RP patients usually suffer from reduced night vision, loss of peripheral vision, decreased visual acuity, and impaired color perception. Although photoreceptor cell death is the primary outcome of RP, the underlying mechanisms are not completely elucidated. Ferroptosis is a novel programmed cell death, with characteristic iron overload and lipid peroxidation. Recent studies, using in vitro and in vivo RP models, discovered the involvement of ferroptosis-associated cell death, suggesting a possible new mechanism for RP pathogenesis. In this review, we discuss the association between ferroptosis and photoreceptor cell damage, and its implication in the pathogenesis of RP. We propose that ferroptotic cell death not only opens up a new research area in RP, but may also serve as a novel therapeutic target for RP.


2019 ◽  
Author(s):  
Vitor Coutinho Carneiro ◽  
Isabel Caetano de Abreu da Silva ◽  
Murilo Sena Amaral ◽  
Adriana S.A. Pereira ◽  
Gilbert O. Silveira ◽  
...  

AbstractTreatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ), and due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935. We synthesized a novel and potent LSD1 inhibitor, MC3935, which was used to treat schistosomula or adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.Author SummarySchistosomiasis mansoni is a chronic and debilitating tropical disease caused by the helminth Schistosoma mansoni. The control and treatment of the disease rely almost exclusively on praziquantel (PZQ). Thus, there is an urgent need to search for promising protein targets to develop new drugs. Drugs that inhibit enzymes that modify the chromatin structure have been developed for a number of diseases. We and others have shown that S. mansoni epigenetic enzymes are also potential therapeutic targets. Here we evaluated the potential of the S. mansoni histone demethylase LSD1 (SmLSD1) as a drug target. We reported the synthesis of a novel and potent LSD1 inhibitor, MC3935, and show that it selectively inhibited the enzymatic activity of SmLSD1. Treatment of juvenile or adult worms with MC3935 caused severe damage to the tegument of the parasites and compromised egg production. Importantly, MC3935 proved to be highly toxic to S. mansoni, culminating in the death of juvenile or adult worms within 96 h. Transcriptomic analysis of MC3935-treated parasites revealed changes in the gene expression of hundreds of genes involved in key biological processes. Importantly, SmLSD1 contains unique sequences within its polypeptide chain that could be explored to develop a S. mansoni selective drug.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
Daria Monaldi ◽  
Dante Rotili ◽  
Julien Lancelot ◽  
Martin Marek ◽  
Nathalie Wössner ◽  
...  

The only drug for treatment of Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary. Targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as promising approach. Due to the strong effects of human Sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as therapeutic targets. In vitro testing of synthetic substrates of S. mansoni Sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long chain deacylation as an intrinsic SmSirt2 activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships (SAR) of identified hits, led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.<br>


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Sign in / Sign up

Export Citation Format

Share Document