scholarly journals Uncovering the hidden antibiotic potential of Cannabis

2019 ◽  
Author(s):  
Maya A. Farha ◽  
Omar M. El-Halfawy ◽  
Robert T. Gale ◽  
Craig R. MacNair ◽  
Lindsey A. Carfrae ◽  
...  

AbstractThe spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies. Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated. Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics. We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA. We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane. Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.

1998 ◽  
Vol 42 (8) ◽  
pp. 1996-2001 ◽  
Author(s):  
Charles J. Gill ◽  
Jesse J. Jackson ◽  
Lynn S. Gerckens ◽  
Barbara A. Pelak ◽  
Randall K. Thompson ◽  
...  

ABSTRACT MK-826 (formerly L-749,345), is a potent 1-β-methyl carbapenem with a long half-life and broad spectrum of activity. This compound is presently in phase-II clinical trials. Its activity against a number of gram-positive and gram-negative organisms was compared to those of imipenem (IPM) and eight other β-lactam agents in two in vivo murine infection models. The distribution in tissue and pharmacokinetic properties of MK-826 and ceftriaxone (CTRX) were also evaluated in CD-1 mice following a single intraperitoneal dose (10 mg/kg of body weight). In addition, concentrations in plasma as well as biliary and urinary recovery of MK-826 were compared to that of CTRX in a cannulated rat model. In a localized murine thigh infection model, MK-826 and IPM were superior to a variety of β-lactam antibiotics in reduction ofStaphylococcus aureus CFU compared with results from nontreated controls (eliminating ≥4 log10 CFU). Similar activities of IPM and MK-826 were observed in a gram-positive bacterial murine systemic infection model. While IPM demonstrated greater efficacy than MK-826 against Enterobacter cloacae (50% effective doses [ED50s] of 0.062 and 0.227 mg/kg, respectively) and Pseudomonas aeruginosa (ED50s of 0.142 and 3.0 mg/kg, respectively) systemic infections, MK-826 was 8- to 350-fold more efficacious than IPM against all other gram-negative organisms in this infection model. In mice, MK-826 demonstrated a higher peak concentration in serum (62.8 versus 42.6 μg/ml) and a larger area under the curve (AUC) (150.8 versus 90.0 μg · hr/ml) than CTRX. The concentrations of MK-826 and CTRX in serum declined slowly, with levels of 3.6 and 2.0 μg/ml remaining, respectively, at 6 h posttreatment. The rat pharmacokinetic model showed the average AUC of MK-826 to be greater than that of CTRX (284 versus 142 μg · hr/ml) following a single 10-mg/kg dose. Also, a half-life of MK-826 longer than that of CTRX (3.2 versus 2.3 h) was observed in this species. The total amount of drug excreted in the bile in 8 h was greater for CTRX (55 to 64% of the dose) than for MK-826 (6 to 12.5% of the dose). Urinary recovery was similar for both antibiotics, with 16 to 18% of the dose recovered over an 8-h period. This excellent broad-spectrum in vivo efficacy of MK-826, together with advantageous pharmacokinetics, supports the argument for its further clinical development.


2002 ◽  
Vol 46 (9) ◽  
pp. 3071-3074 ◽  
Author(s):  
Hee-Jeong Yun ◽  
Yu-Hong Min ◽  
Jung-A Lim ◽  
Jin-Wook Kang ◽  
So-Young Kim ◽  
...  

ABSTRACT The in vitro and in vivo activities of DW286, a novel fluoronaphthyridone with potent antibacterial activity, were compared with those of ciprofloxacin, gemifloxacin, sparfloxacin, and trovafloxacin. Against gram-positive bacteria, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Enterococcus faecalis, the in vitro activity of DW286 was stronger than that of any other reference antibiotic. Against gram-negative bacteria, the activity of DW286 was similar to those of trovafloxacin and gemifloxacin but was weaker than that of ciprofloxacin. In a mouse systemic infection caused by three S. aureus strains, including methicillin-resistant S. aureus and quinolone-resistant S. aureus (QRSA), DW286 demonstrated the most potent activity, as found in vitro. Specially, DW286 is ≥8-fold more active against QRSA than the other fluoroquinolones. And the 50% protective doses for DW286 were correspondent with the in vitro activities.


2011 ◽  
Vol 56 (1) ◽  
pp. 544-549 ◽  
Author(s):  
Catharine C. Bulik ◽  
Pamela R. Tessier ◽  
Rebecca A. Keel ◽  
Christina A. Sutherland ◽  
David P. Nicolau

ABSTRACTCXA-101 is a novel antipseudomonal cephalosporin with enhanced activity against Gram-negative organisms displaying various resistance mechanisms. This study evaluates the efficacy of exposures approximating human percent free time above the MIC (%fT > MIC) of CXA-101 with or without tazobactam and piperacillin-tazobactam (TZP) against target Gram-negative organisms, including those expressing extended-spectrum β-lactamases (ESBLs). Sixteen clinical Gram-negative isolates (6Pseudomonas aeruginosaisolates [piperacillin-tazobactam MIC range, 8 to 64 μg/ml], 4Escherichia coliisolates (2 ESBL and 2 non-ESBL expressing), and 4Klebsiella pneumoniaeisolates (3 ESBL and 1 non-ESBL expressing) were used in an immunocompetent murine thigh infection model. After infection, groups of mice were administered doses of CXA-101 with or without tazobactam (2:1) designed to approximate the %fT > MIC observed in humans given 1 g of CXA-101 with or without tazobactam every 8 h as a 1-h infusion. As a comparison, groups of mice were administered piperacillin-tazobactam doses designed to approximate the %fT > MIC observed in humans given 4.5 g piperacillin-tazobactam every 6 h as a 30-min infusion. Predicted piperacillin-tazobactam %fT > MIC exposures of greater than 40% resulted in static to >1 log decreases in CFU in non-ESBL-expressing organisms with MICs of ≤32 μg/ml after 24 h of therapy. Predicted CXA-101 with or without tazobactam %fT > MIC exposures of ≥37.5% resulted in 1- to 3-log-unit decreases in CFU in non-ESBL-expressing organisms, with MICs of ≤16 μg/ml after 24 h of therapy. With regard to the ESBL-expressing organisms, the inhibitor combinations showed enhanced CFU decreases versus CXA-101 alone. Due to enhancedin vitropotency and resultant increasedin vivoexposure, CXA-101 produced statistically significant reductions in CFU in 9 isolates compared with piperacillin-tazobactam. The addition of tazobactam to CXA-101 produced significant reductions in CFU for 7 isolates compared with piperacillin-tazobactam. Overall, human simulated exposures of CXA-101 with or without tazobactam demonstrated improved efficacy versus piperacillin-tazobactam.


Author(s):  
Erum Malik ◽  
David A. Phoenix ◽  
Timothy J. Snape ◽  
Frederick Harris ◽  
Jaipaul Singh ◽  
...  

AbstractHere the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5–26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3–5.1 mN m−1) and lyse (↑ 15.1–32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1–23) in the N → C direction, with −  < µH > increasing overall from circa − 0.8 to − 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2018 ◽  
Vol 63 (2) ◽  
pp. e01040-18 ◽  
Author(s):  
Sean M. Stainton ◽  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
...  

ABSTRACT Herein, we evaluated sustainability of humanized exposures of cefiderocol in vivo over 72 h against pathogens with cefiderocol MICs of 0.5 to 16 μg/ml in the neutropenic murine thigh model. In Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae displaying MICs of 0.5 to 8 μg/ml (n = 11), sustained kill was observed at 72 h among 9 isolates. Postexposure MICs revealed a single 2-dilution increase in one animal compared with controls (1/54 samples, 1.8%) at 72 h. Adaptive resistance during therapy was not observed.


2015 ◽  
Vol 25 (2-3) ◽  
pp. 79-93 ◽  
Author(s):  
Joseph W. Lengeler

<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.


Author(s):  
Md. Jahidul Hasan

Polymyxins are the last line potential antibiotics against multi-drug resistant gram-negative bacteria and consist of two sister antibiotics: Polymyxin B and colistin (polymyxin E). Intravenous use of polymyxins was started from a long ago in the treatment of serious gram-negative infections and once their uses were restricted due to potential adverse drug reactions, such as nephrotoxicity and neurotoxicity. Lack of in vivo clinical studies on polymyxins mostly, in human body makes the pharmacokinetics and pharmacodynamics of polymyxin B and colistin unclear in many aspects, such as the distribution of polymyxins in different compartments of lung. The nebulization of polymyxins is practicing very limitedly and lack of clinical evidence has not justified this administration technique yet properly to date. The main objective of this review study was to evaluate the pharmacokinetic and pharmacodynamic properties of intravenous and nebulized polymyxins and the related therapeutic potentialities. Aerosolized polymyxins directly administered to the respiratory tract was found with higher drug concentration in different subcompartments of lungs than the intravenous administration and sustainably meets the minimum inhibitory concentration locally with superior bactericidal properties in respiratory tract infections. In contrast, intravenous administration of polymyxins shows similar anti-infective superiority in other organs, such as blood, urinary tract etc. So, during this alarming situation of rapidly emerging multidrug-resistant organisms in human communities, therapeutic administration techniques of last resort polymyxins should be clinically evidence-based for achieving optimum therapeutic outcomes with minimum chance of adverse drug reactions.  


2021 ◽  
Vol 12 ◽  
Author(s):  
Ni Zhang ◽  
Lichong Zhu ◽  
Qiuhong Ouyang ◽  
Saisai Yue ◽  
Yichun Huang ◽  
...  

Polymyxin B (PMB) exert bactericidal effects on the cell wall of Gram-negative bacteria, leading to changes in the permeability of the cytoplasmic membrane and resulting in cell death, which is sensitive to the multi-resistant Gram-negative bacteria. However, the severe toxicity and adverse side effects largely hamper the clinical application of PMB. Although the molecular pathology of PMB neurotoxicity has been adequately studied at the cellular and molecular level. However, the impact of PMB on the physiological states of central nervous system in vivo may be quite different from that in vitro, which need to be further studied. Therefore, in the current study, the biocompatible ultra-uniform Fe3O4 nanoparticles were employed for noninvasively in vivo visualizing the potential impairment of PMB to the central nervous system. Systematic studies clearly reveal that the prepared Fe3O4 nanoparticles can serve as an appropriate magnetic resonance contrast agent with high transverse relaxivity and outstanding biosafety, which thus enables the following in vivo susceptibility-weighted imaging (SWI) studies on the PMB-treated mice models. As a result, it is first found that the blood-brain barrier (BBB) of mice may be impaired by successive PMB administration, displaying by the discrete punctate SWI signals distributed asymmetrically across brain regions in brain parenchyma. This result may pave a noninvasive approach for in-depth studies of PMB medication strategy, monitoring the BBB changes during PMB treatment, and even assessing the risk after PMB successive medication in multidrug-resistant Gram-negative bacterial infected patients from the perspective of medical imaging.


Sign in / Sign up

Export Citation Format

Share Document