Resonances in electronic transport through a quantum wire with impurities and variable cross-sectional shape

2005 ◽  
Vol 72 (19) ◽  
Author(s):  
Vassilios Vargiamidis ◽  
Hariton M. Polatoglou
1993 ◽  
Vol 32 (Part 2, No. 11A) ◽  
pp. L1592-L1595 ◽  
Author(s):  
Takuji Tanaka ◽  
Tadaaki Yamauchi ◽  
Joel N. Schulman ◽  
Yasuhiko Arakawa

2013 ◽  
Vol 461 ◽  
pp. 128-143 ◽  
Author(s):  
Cheng Lin He ◽  
Jin Xiang Chen

This report reviews biomimetic studies performed in China on the beetle forewing, noting that Chinese scholars studying bionics have substantially advanced various branches of biomimetic research in beetles. The report also proposes the development of branches of bionic research and establishes the foundation for corresponding experiments and theories. Then, using theA. dichotomaforewing as a an example, the cross-sectional shape, orientation of the laminated fiber layers, structure of the trabeculae, and respective mechanical properties of the forewing, as well as their biological significance, are reviewed. 1) The forewing has a lightweight border frame structure and an optimal design of variable cross-sections suitable for different positions, which achieves the specific second moment of inertia required for flight. 2) Due to the non-equiangular, laminated structure of the forewing, there are two types of tensile fracture morphologies: fiber breakage and residual bridging. This study demonstrates the anisotropy and the effectiveness of the forewings tensile strength by analyzing the orientation direction of the fibers. 3) The trabecular structure can be used to efficiently improve the peel resistance of the laminated composites. Based on the above points, possible directions for future work are also indicated in this paper.


2008 ◽  
Vol 22 (06) ◽  
pp. 683-696 ◽  
Author(s):  
TUNCER KAYA

We have investigated the transport properties of anisotropic disordered quantum wire by the method of energy level statistics and transfer matrix method. We have found a general average conductance relation in terms of the anisotropy parameter t, disorder strength W, and the cross-sectional area, A, of the wire. From the available numerical data, we have also shown that the anisotropic correlation length ξt can be related to the isotropic correlation length ξ as ξt ≃ t2ξ, for L ≃ A and ξt ≃ tξ, for L ≫ A. Here, L is the length of the wire. In addition, anisotropic dependence of conductance fluctuation and conductance distribution have been studied to a certain extent.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


Sign in / Sign up

Export Citation Format

Share Document