scholarly journals X-ray reflectivity studies of atomic-level surface-segregation in a liquid eutectic alloy of AuSn

2007 ◽  
Vol 75 (10) ◽  
Author(s):  
Venkatachalapathy S. K. Balagurusamy ◽  
Reinhard Streitel ◽  
Oleg G. Shpyrko ◽  
P. S. Pershan ◽  
Mati Meron ◽  
...  
1992 ◽  
Vol 7 (7) ◽  
pp. 1751-1761 ◽  
Author(s):  
J. Eckert ◽  
J.C. Holzer ◽  
C.E. Krill ◽  
W.L. Johnson

Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat7259 ◽  
Author(s):  
Nan Yan ◽  
Nan Xia ◽  
Lingwen Liao ◽  
Min Zhu ◽  
Fengming Jin ◽  
...  

The transition from nanocluster to nanocrystal is a central issue in nanoscience. The atomic structure determination of metal nanoparticles in the transition size range is challenging and particularly important in understanding the quantum size effect at the atomic level. On the basis of the rationale that the intra- and interparticle weak interactions play critical roles in growing high-quality single crystals of metal nanoparticles, we have reproducibly obtained ideal crystals of Au144(SR)60 and successfully solved its structure by x-ray crystallography (XRC); this structure was theoretically predicted a decade ago and has long been pursued experimentally but without success until now. Here, XRC reveals an interesting Au12 hollow icosahedron in thiolated gold nanoclusters for the first time. The Au–Au bond length, close to that of bulk gold, shows better thermal extensibility than the other Au–Au bond lengths in Au144(SR)60, providing an atomic-level perspective because metal generally shows better thermal extensibility than nonmetal materials. Thus, our work not only reveals the mysterious, long experimentally pursued structure of a transition-sized nanoparticle but also has important implications for the growth of high-quality, single-crystal nanoparticles, as well as for the understanding of the thermal extensibility of metals from the perspective of chemical bonding.


1995 ◽  
Vol 13 (2) ◽  
pp. 231-241 ◽  
Author(s):  
J.J. MacFarlane ◽  
P. Wang ◽  
J.E. Bailey ◽  
T.A. Mehlhorn ◽  
R.J. Dukart

Kα satellite spectroscopy can be a valuable technique for diagnosing conditions in high energy density plasmas. Kα emission lines are produced in intense light ion beam plasma interaction experiments as 2p electrons fill partially open Is shells created by the ion beam. In this paper, we present results from collisional-radiative equilibrium (CRE) calculations which show how Kα emission spectroscopy can be used to determine target plasma conditions in intense lithium beam experiments on Particle Beam Fusion Accelerator-II (PBFAII) at Sandia National Laboratories. In these experiments, 8–10 MeV lithium beams with intensities of 1–2 TW/cm2 irradiate planar multilayer targets containing a thin Al tracer. Kα emission spectra are measured using an X-ray crystal spectrometer with a resolution of λ/∆λ = 1200. The spectra are analyzed using a CRE model in which multilevel (NL ∼ 103) statistical equilibrium equations are solved self-consistently with the radiation field and beam properties to determine atomic level populations. Atomic level-dependent fluorescence yields and ion-impact ionization cross sections are used in computing the emission spectra. We present results showing the sensitivity of the Kα emission spectrum to temperature and density of the Al tracer. We also discuss the dependence of measured spectra on the X-ray crystal spectral resolution, and how additional diagnostic information could be obtained using multiple tracers of similar atomic number.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Lincoln Miara ◽  
Louis Piper ◽  
Jacob Nathan Davis ◽  
Laxmikant Saraf ◽  
Tiffany Kaspar ◽  
...  

AbstractA system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1948 ◽  
Author(s):  
Yan Ma ◽  
Anxia Yang ◽  
Huiping Zhu ◽  
Arslan Muhammad ◽  
Pengwei Yang ◽  
...  

In this paper, the effects of Bi2O3 doping on the mechanical properties of PbO ceramic pellets were studied. Different ratios of Bi2O3/PbO (i.e., xBi2O3-(1−x) PbO, where x is 0, 1, 3, 5, or 7 wt.%) were fabricated and sintered at 570, 620, and 670 °C. Mechanical properties including density, hardness, flexural strength, and sintering of PbO were studied for each of the aforementioned compositions. Phase composition, microstructure, and the worn surfaces of the composites were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD analysis revealed that a solid solution formed in the composite ceramic. The best suited conditions of temperature and doping of Bi2O3 for optimal sintering were found to be 620 °C and 3 wt.%, respectively. The hardness of the 3 wt.% Bi2O3-97 wt.% PbO ceramic was found to be 717 MPa, which is about four times higher than the hardness of pure PbO. In addition, the strength of the composites was found to be 43 MPa, which is two times higher than that of pure PbO. The integrity of the composites was verified using the lead–bismuth eutectic alloy flushing experiment. The results of this research paper are important for future studies of oxygen control in the lead–bismuth eutectic alloy of lead-cooled fast reactors.


2019 ◽  
Vol 58 (11) ◽  
pp. 7527-7536 ◽  
Author(s):  
Olga Kraynis ◽  
Janis Timoshenko ◽  
Jiahao Huang ◽  
Harishchandra Singh ◽  
Ellen Wachtel ◽  
...  

1986 ◽  
Vol 83 ◽  
Author(s):  
W. F. Egelhoff

ABSTRACTForward scattering of XPS and Auger electrons by atoms in a crystalline lattice produce beams of enhanced intensity radiating out from the surface at angles corresponding to the internuclear axes present in the top few atomic layers. This effect has been applied to analyze the mechanism of surface segregation in ultrathin metal films, to analyze the interdiffusion at the interfaces of ultrathin films, and to assess the effects of substrate contamination on the growth of epitaxial films. The systems studied in this work are Cu, Ni, and Co on Ni(100), however the purpose of this work is not to investigate these particular systems but to use them to illustrate the capabilities of forward scattering.


Sign in / Sign up

Export Citation Format

Share Document