Modifying current-voltage characteristics of a single molecule junction by isotope substitution: OHOD dimer on Cu(110)

2012 ◽  
Vol 85 (20) ◽  
Author(s):  
H. Okuyama ◽  
A. Shiotari ◽  
T. Kumagai ◽  
S. Hatta ◽  
T. Aruga ◽  
...  
2019 ◽  
Vol 10 (25) ◽  
pp. 6261-6269 ◽  
Author(s):  
Satoshi Kaneko ◽  
Enrique Montes ◽  
Sho Suzuki ◽  
Shintaro Fujii ◽  
Tomoaki Nishino ◽  
...  

An analysis combining SERS and current–voltage response measurements with DFT calculations has identified the molecular adsorption site in a single molecule junction.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850070 ◽  
Author(s):  
BAO-AN BIAN ◽  
YA-PENG ZHENG ◽  
PEI-PEI YUAN ◽  
BIN LIAO ◽  
YU-QIANG DING

We carry out first-principles calculations based on density functional theory and non-equilibrium Green’s function to investigate the electronic transport properties of a diarylethene-based molecule sandwiched between two Au electrodes. This molecular switch can be reversed between open and close forms by using light stimulation. We analyze the switch behavior of these two forms through the current–voltage curves, transmission spectra and molecular projected self-consistent Hamiltonian. It has been found that the current of the close form is significantly larger than the open form, and there is a large and stable switch ratio in a wide bias window. This result indicates that this molecule can become one of the good candidates for optical molecular switch in the future.


2011 ◽  
Vol 2 ◽  
pp. 714-719 ◽  
Author(s):  
Mickael L Perrin ◽  
Christian A Martin ◽  
Ferry Prins ◽  
Ahson J Shaikh ◽  
Rienk Eelkema ◽  
...  

We have investigated charge transport in ZnTPPdT–Pyr (TPPdT: 5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin) molecular junctions using the lithographic mechanically controllable break-junction (MCBJ) technique at room temperature and cryogenic temperature (6 K). We combined low-bias statistical measurements with spectroscopy of the molecular levels in the form of I(V) characteristics. This combination allows us to characterize the transport in a molecular junction in detail. This complex molecule can form different junction configurations, having an observable effect on the trace histograms and the current–voltage (I(V)) measurements. Both methods show that multiple, stable single-molecule junction configurations can be obtained by modulating the interelectrode distance. In addition we demonstrate that different ZnTPPdT–Pyr junction configurations can lead to completely different spectroscopic features with the same conductance values. We show that statistical low-bias conductance measurements should be interpreted with care, and that the combination with I(V) spectroscopy represents an essential tool for a more detailed characterization of the charge transport in a single molecule.


2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2019 ◽  
Vol 48 (19) ◽  
pp. 6347-6352
Author(s):  
Di Wu ◽  
Jueting Zheng ◽  
Chenyong Xu ◽  
Dawei Kang ◽  
Wenjing Hong ◽  
...  

A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.


2020 ◽  
Author(s):  
Albert C. Aragonès ◽  
Katrin F. Domke

Abstract Progress in molecular electronics (ME) is largely based on improved understanding of the properties of single molecules (SM) trapped for seconds or longer to enable their detailed characterization. We present a plasmon-supported break-junction (PBJ) platform to significantly increase the lifetime of SM junctions of 1,4-benzendithiol (BDT) without the need for chemical modification of molecule or electrode. Moderate far-field power densities of ca. 11 mW/µm2 lead to a >10-fold increase in minimum lifetime compared to laser-OFF conditions. The nearfield trapping efficiency is twice as large for bridge-site contact compared to hollow-site geometry, which can be attributed to the difference in polarizability. Current measurements and tip-enhanced Raman spectra confirm that native structure and contact geometry of BDT are preserved during the PBJ experiment. By providing a non-invasive pathway to increase short lifetimes of SM junctions, PBJ is a valuable approach for ME, paving the way for improved SM sensing and recognition platforms.


2015 ◽  
Vol 17 (7) ◽  
pp. 5386-5392 ◽  
Author(s):  
Alberto Torres ◽  
Renato B. Pontes ◽  
Antônio J. R. da Silva ◽  
Adalberto Fazzio

We theoretically investigate, as a function of the stretching, the behaviour of the Seebeck coefficient, the electronic heat conductance and the figure of merit of a molecule-based junction composed of a benzene-1,4-dithiolate (BDT) molecule coupled to Au(111) surfaces at room temperature.


Sign in / Sign up

Export Citation Format

Share Document