scholarly journals Modified gravityà laGalileon: Late time cosmic acceleration and observational constraints

2010 ◽  
Vol 82 (10) ◽  
Author(s):  
Amna Ali ◽  
Radouane Gannouji ◽  
M. Sami
2018 ◽  
Vol 27 (05) ◽  
pp. 1850058 ◽  
Author(s):  
M. Shahalam ◽  
Ratbay Myrzakulov ◽  
Shynaray Myrzakul ◽  
Anzhong Wang

We study the generalized [Formula: see text] attractor model in the context of the late time cosmic acceleration. The model interpolates between the scaling freezing and thawing dark energy models. In the slow roll region, the original potential is modified whereas the modification ceases in the asymptotic region and the effective potential behaves as the quadratic one. In our setting, the field rolls slowly around the present epoch and mimics the scaling behavior in the future. We obtain observational constraints on the model parameters by using an integrated database (SN+Hubble+BAO+CMB).


2021 ◽  
Vol 36 (08) ◽  
pp. 2150049
Author(s):  
Abdulla Al Mamon

In this paper, we reconstruct the late-time cosmological dynamics using a purely kinematic approach. In particular, considering a divergence-free parametrization for deceleration parameter [Formula: see text], we first derive the jerk parameter [Formula: see text] and then confront it with combination of various cosmological datasets. We use the most recent observational datasets consisting of the 1048 Pantheon Supernovae Ia data points in the redshift range [Formula: see text], the 51 data points of observational Hubble parameter (OHD) measurements in the redshift range [Formula: see text], the Hubble constant [Formula: see text] (R19) and the CMB shift parameter measurements. We study the evolution of different cosmological quantities for the present model and compare it with the concordance [Formula: see text]CDM model. We find that only the combined Pantheon+OHD+R19 data shows good agreement with the [Formula: see text]CDM [Formula: see text] model within [Formula: see text] confidence region. We also find that our model successfully generates late time cosmic acceleration along with a decelerated expansion in the past.


Author(s):  
Robert R. Caldwell

The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress–energy and space–time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850170 ◽  
Author(s):  
B. Mishra ◽  
Sankarsan Tarai ◽  
S. K. Tripathy

Anisotropic cosmological models are constructed in f(R, T) gravity theory to investigate the dynamics of universe concerning the late time cosmic acceleration. Using a more general and simple approach, the effect of the coupling constant and anisotropy on the cosmic dynamics have been investigated. In this study, it is found that cosmic anisotropy substantially affects cosmic dynamics.


2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050056
Author(s):  
Sunil Kumar Tripathy ◽  
Subingya Pandey ◽  
Alaka Priyadarsini Sendha ◽  
Dipanjali Behera

A bouncing scenario is studied in the framework of generalized Brans–Dicke theory. In order to have a dark energy (DE) driven late time cosmic acceleration, we have considered a unified dark fluid simulated by a linear equation of state (EoS). The evolutionary behavior of the DE equation of parameter derived from the unified dark fluid has been discussed. The effect of the bouncing scale factor on the Brans–Dicke parameter, self-interacting potential and the Brans–Dicke scalar field is investigated.


2004 ◽  
Vol 19 (31) ◽  
pp. 5343-5350 ◽  
Author(s):  
DAMIEN A. EASSON

Modified gravitational theories can provide alternatives to dark energy as an explaination for the observed late-time cosmic acceleration. Several examples of low-curvature corrections to the Einstein-Hilbert action are studied. These models generically contain unstable de Sitter solutions and, depending on the parameters of the theory, can exhibit late time accelerating attractor solutions.


2015 ◽  
Vol 12 (04) ◽  
pp. 1550042 ◽  
Author(s):  
Stuart Marongwe

The Schwarzschild approach is applied to solve the field equations describing a Nexus graviton field. The resulting solutions are free from singularities which have been a problem in general relativity since its inception. Findings from this work also demonstrate that at the Hubble radius, the metric signature of space-time changes generating short-lived but intense bursts of energy during the transition process. The solutions in this paper also provide an explanation to the enigma of late time cosmic acceleration, the galaxy rotation curve problem and the coincidence problem.


Sign in / Sign up

Export Citation Format

Share Document